Influência de Grupos Protetores na Estéreo e Regiosseletividade da Reação de Hidroteluração do Álcool Propargílico

Dayvson José P. de Souza¹(IC)*, Juliana Manso de O. Silva¹(PG), Paulo Henrique Menezes¹(PQ).

¹Laboratório de Orgânica Aplicada, Departamento de Química Fundamental - UFPE. Recife (PE). CEP: 50.740-540. Fone: 55-81-2126 7444. *triusclever@gmail.com.

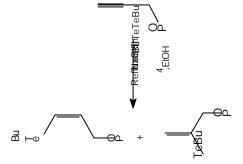
Palavras Chave: Hidroteluração, Álcool Propargílico, teluretos vinílicos.

Introdução

Existem diversas metodologias descritas para a preparação de compostos vinílicos de telúrio¹, sendo a reação de hidroteluração² um dos métodos mais utilizados. A adição de um reagente de telúrio nucleofílico a alquinos pode levar à formação de dois isômeros, sendo a regio-seletividade da reação dependente da natureza do alquino.

Ademais, estudos preliminares realizados em nosso grupo de pesquisa indicaram que o régio- e estereocontrole da reação de hidroteluração pode ser alterado por outros fatores como a temperatura, o solvente utilizado e o grupo protetor.

Neste trabalho investigamos a influência do grupo protetor na reação de hidroteluração do álcool propargílico.


Resultados e Discussão

A primeira etapa do estudo envolveu a proteção do álcool propargílico utilizando diversos grupos protetores (Esquema 1).

Os grupos protetores utilizados foram o cloreto de triisopropilsilano (TIPSCI), cloreto de *tert*-butil difenilsilano (TBDPSCI), cloreto de *tert*-butil-dimetil silano (TBDMSCI) e o cloreto de metoxi-etoximetila (MEMCI).

Com a obtenção dos compostos protegidos, foi realizada a reação de hidroteluração³ (Esquema 2).

Esquema 2

31ª Reunião Anual da Sociedade Brasileira de Química

Os dados referentes a razão dos isômeros obtidos são apresentados na tabela abaixo:

Tabela 1. Proporção dos isômeros obtidos pela hidroteluração do álcool propargílico.

Grupo Protetor	Proporção Z : E : Regio-isômero (%)*
Sem grupo protetor	58:Traços:42
TIPS	82:6:12
TBDPS	71:10:19
TBDMS	81:6:13
MEM	79:0:21

*Valores determinados através de RMN ¹H de acordo com as integrais correspondentes aos sinais dos prótons vinílicos.

Observou-se que os grupos protetores TIPS e TBDMS foram os que apresentaram uma melhor seletividade, obtendo-se em ambos os casos preferencialmente o isômero Z.

Verificou-se ainda que para o MEM, não há a formação do isômero *E*. No entanto a utilização deste reagente torna-se limitada por ser um potencial carcinogênico.

Conclusões

A hidroteluração do álcool propargílico empregando grupos protetores volumosos como o TIPS e o TBDMS leva a uma maior seletividade da reação. Outras variáveis como temperatura e solvente estão sendo avaliadas em nosso laboratório. A aplicação destes resultados na síntese total de produtos biologicamente ativos encontra-se em andamento em nosso laboratório.

Agradecimentos

Os autores agradecem ao apoio financeiro do CNPq a ao MEC/SESu.

¹Irgolic, K. J. *The Organic Chemistry of Tellurium*; Grodon and Breach Science Publisher: New York, **1974**.

²Vieira, M. L.; Zinn, F. K.; Comasseto, J. V. *J. Braz. Chem. Soc.* **2001**, 12, 586.

Sociedade Brasileira de Química (SBQ)

³Barros, S. M.; Dabdoub, M. J.; Dabdoub, V. M.; Comasseto, J. V. *Organometallics* **1989**, 8, 1661.