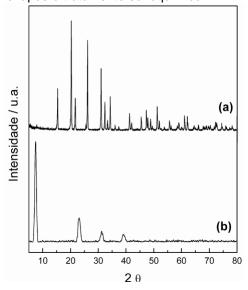
# Síntese de materiais nanohíbridos através de irradiação ultra-sônica

Marcos Malta\*<sup>1</sup> (PQ), Luiz Klleber R. Oliveira<sup>1</sup> (IC), Tânia M. Benedetti<sup>2</sup> (PG), Roberto M. Torresi<sup>2</sup> (PQ) e Mauro Korn<sup>1</sup> (PQ)

\*mamsantos@uneb.br

1 Universidade do Estado da Bahia, Departamento de Ciências Exatas e da Terra, Campus 1, Salvador (BA) 2 Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo (SP)

Palavras Chave: nanocompósitos, ultra-som, óxido de vanádio, polipirrol

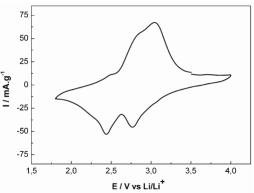

## Introdução

Nos últimos anos, o ultra-som vem se tornando uma das ferramentas mais versáteis para síntese de novos materiais. Os efeitos causados pela cavitação acústica no meio reacional (geração de radicais altamente reativos, microjatos e colisão interpartículas) são bastante apropriados para geração de materiais nanoestrutrados<sup>1</sup>.

Neste trabalho, demonstramos a obtenção de nanohíbridos de óxido de vanádio/polipirrol ( $VO_x/PPi_y$ ) utilizando o óxido de vanádio cristalino ( $c-V_2O_5$ ) como precursor através de uma inédita rota sonoquímica.

### Resultados e Discussão

O nanohíbrido VO<sub>x</sub>/PPi<sub>y</sub> pode ser facilmente obtido adicionando pirrol em uma solução aquosa contendo c-V<sub>2</sub>O<sub>5</sub>. A aplicação de ultra-som (Vibracell VC 130, 20 kHz, 130 W) durante pelo menos 3 horas leva a conversão de c-V<sub>2</sub>O<sub>5</sub> em um nanocompósito lamelar com espaçamento entre camadas de 11,86 Å (Figura 1b). A análise comparativa dos espectros de FTIR do precursor e produto final indicou a presença de polipirrol após o tratamento sonoquímico.




**Figura 1.** Difração de Raios-X de (a)  $c-V_2O_5$  e (b)  $VO_x/PPi_y$ .

A resposta eletroquímica do VO<sub>x</sub>/PPi<sub>y</sub> frente à intercalação de íons lítio na escala de potencial de

31ª Reunião Anual da Sociedade Brasileira de Química

4,0 a 1,8 V é apresentada na Figura 2. A corrente catódica observada para potenciais menores que 3,2 V corresponde à inserção de Li<sup>+</sup>. Durante esse processo, o nanocompósito apresenta dois picos de intercalação em 2,75 e 2,45 V. Durante a varredura anódica (extração de íons Li<sup>+</sup>), podem ser observados três picos em 2,50, 2,80 e 3,00 V. As capacidades específicas calculada a partir dos dois primeiros ciclos voltamétricos foram 168,9 e 160 Ah/kg, respectivamente.



**Figura 2.** Segundo ciclo voltamétrico do nanohíbrido  $VO_{\nu}/PPi_{y}$ . em carbonato de propileno e LiClO<sub>4</sub> 1,0 M com velocidade de varredura de 100  $\mu$ V/s.

#### Conclusões

Através dos resultados apresentados acima foi possível demonstrar, pela primeira vez, a viabilidade da síntese sonoquímica do nanohíbrido VO<sub>x</sub>/PPi<sub>y</sub>. Esse material apresenta alto ordenamento lamelar com potencial aplicação em reações de eletroinserção.

#### **Agradecimentos**

Os autores agradecem ao CNPq e à FAPESB (PRODOC/DCR) pelo suporte financeiro.

<sup>&</sup>lt;sup>1</sup> Adewuyi, Y. G. Ind. Eng. Chem. Res. 2001, 40, 4681.