DETERMINAÇÃO ISOTÓPICA (% EM ÁTOMOS) SIMULTÂNEA DE N E C, EM AMOSTRAS DE ¹³CO(¹⁵NH₂)₂, POR ESPECTROMETRIA DE MASSAS

Carlos Roberto Sant'Ana Filho^{1*} (PG), José Albertino Bendassolli¹ (PQ), Laila Facin¹ (IC), Hugo Henrique Batagello¹ (TC), José Aurélio Bonassi¹ (TC). santana@cena.usp.br

Palavras Chave: ¹³C, ¹⁵N, espectrometria de massas, isótopo estáveis, compostos enriquecidos, determinação isotópica.

Introdução

As determinações isotópicas de N e C, por espectrometria de massas, em amostras orgânicas têm sido facilitadas com surgimento de novos sistemas de preparo de amostras¹. Entretanto a principal limitação dessa técnica vem pelo fato da utilização de gases puros (ausência de interferentes isobáricas), sendo necessário o uso de sistemas complexos de separação e purificação². Desta forma, o presente trabalho tem por objetivo estabelecer um procedimento simplificado para determinação isotópica (% em átomos) simultânea de N e C, em amostras sólidas de ¹³CO(¹⁵NH₂)₂, por espectrometria de massas. As amostras de 13CO(15NH2)2 foram obtidas utilizando a técnica da diluição isotópica a partir de duas fontes de CO(NH₂)₂, sendo uma com 13 C e a outra com 73,6 % em átomos de 15N.

No procedimento analítico foi utilizado um espectrômetro de massas ATLAS-MAT, modelo CH4 de fluxo molecular (determinações absolutas), com admissão de amostras já convertida na forma gasosa. Para a obtenção do ¹⁵N₂ e ¹³CO₂ utilizou-se o método via seca com excesso de oxigênio, onde a ¹³CO(¹⁵NH₂)₂ foi oxidada com CuO_(s) a 550 °C durante 12 horas, em tubos de vidro de borossilicato (20 cm x 9 mm), sob vácuo³⁻⁴. Em seguida, o tubo contendo ¹⁵N₂, ¹³CO₂ e H₂O_(a), foi levado para uma linha de vidro, sob baixa pressão (10⁻³ KPa), acoplada "on line" com o sistema de admissão do espectrômetro de massas. Nessa linha o tubo foi quebrado e os gases foram liberados passando por duas armadilhas criogênicas (-70 e -196 °C) para reter H₂O e ¹³CO₂, sendo o ¹⁵N₂ admitido ao espectrômetro para determinação isotópica. Após, eliminou-se o ${}^{15}\mathrm{N}_2$ pelo sistema de vácuo do espectrômetro e o 13CO2, devidamente purificado, foi admitido para análise.

Resultados e Discussão

Os resultados das determinações isotópicas simultâneas de N e C (% em átomos de ¹⁵N e ¹³C) 31ª Reunião Anual da Sociedade Brasileira de Química

apresentados na Tabela 1 indicam a viabilidade do método, sendo verificado um desvio relativamente baixo em ambos os valores isotópicos. Deve-se ainda salientar, que os valores obtidos na determinação isotópica experimental evidenciaram ausência de interferências nos níveis isotópicos.

Tabela 1. Determinação isotópica (% em átomos) simultânea de ¹⁵N e ¹³C, em amostras de ¹³CO(¹⁵NH₂)₂, por espectrometria de massas. (n=3)

Amostra	Abundância isotópica (Teórica) ¹		Abundância isotópica (Experimental) ²	
s	% ¹⁵ N	% ¹³ C	% ¹⁵ N	% ¹³ C
Α	0.37 ± 0.0	1,1 ± 0,0	0.38 ± 0.0	1,1 ± 0,0
В	5.0 ± 0.1	$93,5 \pm 0,1$	$5,3 \pm 0,3$	$91,3 \pm 0,3$
С	$14,7 \pm 0,4$	$80,5 \pm 0,5$	$13,7 \pm 0,5$	79.8 ± 0.6
D	$29,9 \pm 0,2$	$59,8 \pm 0,2$	$30,4 \pm 0,1$	$58,4 \pm 0,4$
E	$50,3 \pm 0,2$	$32,4 \pm 0,3$	$49,8 \pm 0,2$	$32,0 \pm 0,2$
F	$72,5 \pm 0,2$	$2,5 \pm 0,3$	$72,7 \pm 0,4$	$2,4 \pm 0,3$

1- Dados obtidos a partir da técnica da diluição isotópica entre duas fontes de CO(NH₂)₂ enriquecidas; 2 - Ánálises isotópicas obtidas no espectrômetro de massas ATLAS-MAT, CH4.

Os valores médios apresentados referentes à amostra (A) com variação isotópica natural (0,37 % em átomos de ¹⁵N e 1,1 % em átomos de ¹³C) evidenciaram a não ocorrência de uma diferença isotópica substancial no processo oxidação.

Conclusões

O procedimento de obtenção e purificação do ¹⁵N₂ e ¹³CO₂, provenientes das amostras de ¹³CO(¹⁵NH₂)₂, mostrou-se adequado para a determinação isotópica simultânea.

Agradecimentos

Ao Laboratório de Isótopos Estáveis pelo apoio técnico e a FAPESP pelo financiamento do projeto de pesquisa e bolsa de estudos.

¹Laboratório de Isótopos Estáveis (LIE) Centro de Energia Nuclear na Agricultura – Universidade de São Paulo CENA/USP Av. Centenário, 303 Piracicaba, SP 13400-970 CP. 96

¹ Bendassolli, J A.; Mortatti, J.; Trivelin, P.C.O.; Ignoto, R.F.; Bonassi, J.A. e Tavares, G. A. *Quim. Nova.* **2002**, 25, 2, 312-315.

Sociedade Brasileira de Química (SBQ)

Marchini, J. S.; Basile Filho, A.; Vannucchi, H.; Darmanun, D. e Krempf, M. Medicina. 1997, 30, 494-507.
Buchanan, D.L.; Corcoran, B.J. Anal. Chem. 1957, 31, 1635-

^{1638.}

⁴ Frazer, J.W.; Crawford, R. Mikrochim. Act. **1963**, 3, 561-566.