Estudo preliminar da mastigação e da coagulação nas propriedades tecnológicas da borracha natural crua de clones da série IAC

Rogério Manoel Biagi Moreno^{1*} (PQ), Paulo de Souza Gonçalves² (PQ), Luiz Henrique Capparelli Mattoso³ (PQ)

Palavras Chave: Borracha natural, clones, seringueira, propriedades tecnológicas, mastigação, coagulação.

Introdução

O Brasil importa a maior parte da borracha natural (BN) consumida para suprir o mercado interno. Assim, é preciso o aumento da produção, onde a qualidade da BN deverá ser garantida por métodos de coagulação e preparação otimizados da BN. A Embrapa Instrumentação Agropecuária e o Instituto Agronômico atuam na caracterização da BN e no melhoramento genético seringueira, respectivamente. O objetivo desse trabalho foi realizar uma avaliação preliminar das metodologias de preparação da BN pelas variações na mastigação e coagulação.

Resultados e Discussão

As Tabelas 1, 2 e 3 apresentam os resultados das variações da P_0 , PRI (%) e V_R para os tempos de mastigação estabelecido pela norma NBR 11597 1 , 5 e 10 minutos adicionais, respectivamente. Na mastigação ocorrem, simultaneamente, os processos de cisão de cadeias e formação de ligações cruzadas. O processo de cisão das cadeias poliméricas é o principal por levar a uma diminuição da P_0 e da V_R . Houve, uma redução mais discreta no PRI (%), possivelmente, pelo fato dos constituintes não borracha com ação anti-oxidante, tais como amino ácidos e tocoferóis 2,3 , não foram tão afetados pelos processo mecânico da mastigação.

Tabela 5. Variação da P₀, PRI e V_R para o tempo de preparação da norma NBR 11597.

· · · · · · · · · · · · · · · · · · ·			
Clones	P_0	PRI (%)	V_R
IAC 56	61	84	101
IAC 301	53	77	100
RRIM 600	69	68	107

Tabela 2 Variação da P_0 , PRI e V_R de 5 minutos adicionais à norma NBR 11597.

diolonalo a nonna ribit i roor:				
	Clones	Po	PRI (%)	V_R
	IAC 56	52	80	88
	IAC 301	44	73	85
	RRIM 600	59	65	91

Tabela 7. Variação da P_0 , PRI e V_R de 10 minutos adicionais à norma NBR 11597.

Clones	P_0	PRI (%)	V_R

IAC 56	40	71	66
IAC 301	36	63	63
RRIM 600	47	57	70

As Tabelas 4 e 5 apresentam os resultados das variações da P_0 , PRI e V_R para os tratamentos de coagulação com ácido acético (3N) e ácido pirolenhoso (10%), respectivamente.

Tabela 4. Variação da P_0 , PRI e V_R para a coagulação com ácido acético à 3N.

Clones	P_0	PRI (%)	V_R
IAC 56	61	84	101
IAC 301	53	77	100
RRIM 600	69	68	107

Tabela 5. Variação da P_0 , PRI e V_R para a coagulação com ácido pirolenhoso à 10%.

oagalação com acido pirolormoco a 1070.				
	Clones	Po	PRI (%)	V_R
	IAC 56	57	89	93
	IAC 301	50	83	91
	RRIM 600	65	75	100

A BN coagulada com ácido pirolenhoso tem uma discreta diminuição de P₀ e V_R e o aumento significativo do PRI (%). O ácido pirolenhoso é obtido em fornos de carvão através da pirólise de madeiras, onde o extrato pirolenhoso é obtido da condensação dos vapores da fumaça liberada nos fornos, produzindo um licor composto basicamente de alcatrão, o ácido pirolenhoso e óleos vegetais que podem ser separados por meio de decantação. Os componentes orgânicos do ácido pirolenhoso podem estar agindo como antioxidantes, favorecendo valores mais altos do PRI (%).

Conclusões

O tempo de mastigação influencia significativamente na redução das P_0 e da V_R e a coagulação com ácido pirolenhoso propicia valores mais elevados do PRI (%).

Agradecimentos

Os autores agradecem o suporte financeiro proporcionado por FAPESP, Embrapa Instrumentação Agropecuária, CNPq e CAPES.

^{1,3} Embrapa Instrumentação Agropecuária, Rua XV de Novembro, 1452, C.P.741, CEP: 13. 560-970, São Carlos-SP, rogerio @cnpdia.embrapa.br; ² Instituto Agronômico, Campinas-SP.

¹Associação Brasileira de Normas Técnicas, NBR 11597, **1996**.

Sociedade Brasileira de Química (SBQ)

²Na-Ranong, n.; Livonniere, H. e Jacob, J. L. *Plantations, Recherche, Développement* **1995**, 2, 44.

³Hwee, E. A. e Tanaka, Y. *Trends Pol. Sci.* **1993**, *3*, 493.