ESTUDO DA CINÉTICA DE SINTERIZAÇÃO DO SISTEMA SnO2.ZnO

Luiza Kupchak¹(PG), Sandra Regina Masetto Antunes² (PQ), Dalmarino Setti³ (PQ), Sérgio Mazurek Tebecherani²(PQ), André Vitor Chaves de Andrade⁴ (PQ), Augusto Celso Anttunes² (PQ)

Universidade Estadual de Ponta Grossa. LIMAC – Laboratório Interdisciplinar de Materiais Cerâmicos. Av. Carlos Cavalcanti 4748 Uvaranas, CEP: 84030-900, Ponta Grossa, PR. Fone: (42) 220-3062. "1" Pós-Graduando em Engenharia e Ciência de Materiais; "2" Departamento de Química; "3" UTFPR – Pato Branco e "4" Departamento de Física. E-mail: ac_antunes @uol.com.br

Palavras Chave: sinterização, SnO2, ZnO

Introdução

A adição de ZnO em sistemas de SnO₂, faz com que estas cerâmicas obtenham elevada densificação quando adicionadas haixas concentrações (1). A utilização de modelos analíticos para o tratamento dos dados experimentais, pela determinação dos principais parâmetros cinéticos, tais como, mecanismo de sinterização e energia de ativação, facilita a avaliação dos efeitos dos dopantes sobre o material base. Os modelos analíticos foram desenvolvidos com base em algumas considerações idealizadas, como partículas esféricas, distribuição do tamanho de partícula uniforme, presença de um único mecanismo e isenção de crescimento de grão, o que não ocorre normalmente em sistemas reais (2). Neste trabalho estudou-se a cinética de sinterização no estágio inicial, com adição de 0,6% e 1,2% em mol de ZnO em diferentes taxas de aquecimento constante. As amostras foram obtidas por moagem em meio de álcool isopropílico, Os corpos de prova foram prensados isostaticamente e sinterizados em um dilatômetro até a temperatura de 1350 °C. As caracterizações foram realizadas utilizando as técnicas de picnometria de hélio, difração de raios X e microscopia eletrônica de varredura acoplada a um EDS.

Resultados e Discussão

Para a caracterização estrutural foi utilizada a técnica de difração de raios X. Nos DRX observase os picos característicos somente da fase SnO₂:

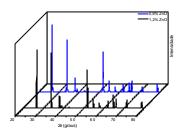


Figura 1 - Difratograma de raios X para os sistemas SnO_2 com 0,6 e 1,2 % de ZnO das amostras sinterizadas em dilatômetro até a temperatura de 1350 °C.

A densidade após sinterização foi determinada com base na técnica de Picnometria de Hélio, a qual se apresenta como a mais adequada neste tipo de estudo em virtude da importância da determinação da densidade para a aplicação dos modelos analíticos. Verificou-se que a adição de ZnO possibilitou a obtenção de cerâmicas com densidades relativas superiores a 90%.

Os métodos de estudo utilizados foram os propostos por Venkatu-Johnson, Woolfrey-Bannister, Wang-Raj e Young-Cutler. Com a aplicação destes modelos foi determinada a energia de ativação e os possíveis mecanismos atuantes no sistema.

Tabela 1. Valores de energia de ativação e obtidos pelos diferentes modelos analíticos para o sistema com 0.6% de ZnO.

	Modelo Analítico	Energia de Ativação (k.J.mol ⁻	Desvio Padrão (k.J.mol ⁻¹)	Mecanismo Dominante Sinterização	Desvio Padrão
	Wang-Raj	540,07	± 14,95	0,952	± 0,032
	Venkatu Johnson	500,11	± 6,25	2,452	± 0,032
	Woolfrey Bannister	555,68	± 17,34	1,490	± 0,010

Conclusões

A adição de ZnO em cerâmica de ${\rm SnO_2}$ possibilitou a obtenção de cerâmica densa.

A análise dos resultados dos valores do mecanismo dominante obtido a partir dos modelos utilizados indica a possibilidade de que mais de um mecanismo difusional esteja atuando predominantemente.

Agradecimentos

Sociedade Brasileira de Química (SBQ)

Fundação Araucária e Paraná Tecnologia.

¹ YOUNG, W.S.; CUTLER, I.B. J. Am. Cer. Soc. **1970**, 53, 659. ² WOOLFREY, J.L.; BANNISTER, M.J. J. Am. Cer. Soc. **1972**, 55,

<sup>390.

&</sup>lt;sup>3</sup> CHU, M.Y.; RAHAMAN, M.N.; DE JONGHE, L.C. J. Am. Cer. Soc, **1991**, 74, 1217.