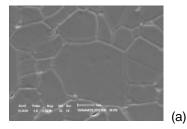
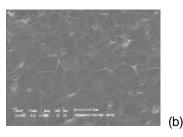
VARISTORES DO SISTEMA TIO₂.Cr₂O₃.Nb₂O₅

Ricardo Guido Follador Neto¹ (PG), Augusto Celso Antunes² (PQ), André Vitor Chaves de Andrade³ (PQ), Sandra Regina Masetto Antunes² (PQ)

Universidade Estadual de Ponta Grossa. LIMAC – Laboratório Interdisciplinar de Materiais Cerâmicos. Av. Carlos Cavalcanti 4748 Uvaranas, CEP: 84030-900, Ponta Grossa, PR. Fone: (42) 220-3055. "1" Pós-Graduando em Engenharia e Ciência de Materiais; "2" Departamento de Química; "3" Departamento de Física. E-mail: ac_antunes@uol.com.br

Palavras Chave: varistor, TiO2, baixa tensão


Introdução


Os varistores, ou resistores não lineares, são materiais cerâmicos caracterizados por apresentarem comportamento elétrico não linear entre a corrente (I) e a tensão (V). Sua principal característica é a diminuição da resistência quando ocorre um aumento de intensidade do campo elétrico aplicado (1). Estes materiais são utilizados como elementos protetores de circuitos elétricos e eletrônicos (2). Um material cerâmico que apresenta potencial como varistor de baixa tensão é o TiO2. O primeiro estudo sobre varistores de TiO₂ foi publicado por Yan e Rhodes (3) em 1981. Utilizando como dopantes Nb₂O₅ e BaO e atmosfera oxidante no resfriamento, obtiveram coeficiente de não linearidade α entre 3 e 7. Desde então se tem estudado diversos sistemas varistores a base de dióxido de titânio. Neste trabalho verificou-se a influência do dopante Nb2O5 na condutividade elétrica e nas propriedades microestruturais do sistema (99,90-x)%TiO₂.0,05%Cr₂O₃.x%Nb₂O₅ (% em mol), sendo x = 0.10% 0.15% 0.20% 0.25%. O processamento empregado foi o método convencional de mistura dos óxidos. As amostras foram conformadas a 63 MPa e então sinterizadas a 1400°C por 2 horas. O estudo das propriedades elétricas para os diferentes sistemas foram realizados em corrente continua a temperatura ambiente e, em função da variação da temperatura. As microestruturas foram caracterizadas por DRX, MEV, EDS e quantificadas pelo método de Rietveld.

Resultados e Discussão

Para a caracterização estrutural foi utilizada a técnica de difração de raios X. Nos DRX observa-se os picos característicos da fase TiO₂

Pela análise das fotomicrografias obtida por microscopia eletrônica de varredura (MEV) pode-se visualizar que a adição crescente de $\mathrm{Nb}_2\mathrm{O}_5$ provoca uma diminuição no tamanho médio de grãos.

Figura 1. Micrografias obtidas por microscopia eletrônica de varredura do compacto cerâmico do sistema (99,90-x)% $TiO_2.0,05\%Cr_2O_3.x\%Nb_2O_5$ (% em mol) sinterizado a 14000°C por 2 horas: a) x=0,05 e b) x=0,25.

O estudo das propriedades elétricas para as diferentes dopagens de $\mathrm{Nb_2O_5}$ foi realizado em corrente continua a temperatura ambiente. Os resultados obtidos caracterizam os materiais como varistores de baixa tensão, com tensões de ruptura entre 5 e 250 V/cm.

Conclusões

A adição crescente de óxido de nióbio (V) ao sistema $TiO_2.Cr_2O_3$ provoca uma diminuição no tamanho médio de grãos e, deste modo, altera-se o comportamento elétrico dos sistemas estudados, levando à um aumento da tensão de ruptura.

Agradecimentos

Fundação Araucária e Paraná Tecnologia.

1¹ PIANARO, S.A.; BUENO, P.R.; LONGO, E. e VARELA, J. A. J. Mat. Sci. Lett. **1995** 14, 692.

Sociedade Brasileira de Química (SBQ)

³ ² MENEGOTTO, G. F., ANTUNES, A.C., PIANARO, S. A., ZARA, A. J., A. C. ANTUNES, S. R. M. J. Mat. Sci.-Materials In Electronics. 2002 .13, 253 2002.

^{3 3} YAN, M., RHODES, W. W. Applied Physics Letters. **1982**, 40, 536.