OTIMIZAÇÃO DO PROCESSO DE OBTENÇÃO DO TITANATO PILARIZADO

Gabriel Aparecido Furquim¹ (IC), Liliane Magalhães Nunes^{2*} (PQ).

1,2 - Universidade Federal de Goiás. liliane @quimica.ufg.br Palavras Chave: Titanato, Lamelar, Pilarização. Planejamento Fatorial

Introdução

Compostos inorgânicos lamelares à base de titânio vêm sendo estudados devido às suas químicas propriedades е termodinâmicas. principalmente por realizarem trocas iônicas de grupos ácidos na superfície e por sofrerem processo de intercalação¹. Além disso, estes titanatos estão sendo amplamente usados explorando-se suas propriedades térmicas e catalíticas^{2,3}. Na síntese dos titanatos pilarizados existem três principais etapas que afetam diretamente o produto final. A primeira é a intercalação de hexilamina na estrutura, aumentando as dimensões da lamela e permitindo a entrada de moléculas maiores. A segunda, a intercalação com TEOS (tetraetilortossilicato). Por último, faz-se a calcinação do sólido a elevadas temperaturas, eliminando a matéria orgânica (proveniente das moléculas de TEOS), restando apenas os pilares de sílica (SiO₂) e obtendo-se um material poroso e com área superficial considerável. Este processo de síntese foi analisado usando-se um planejamento fatorial, sendo que os três fatores citados foram testados em dois níveis cada, resultando em oito experimentos que tiveram como matriz o tetratitanato de potássio (K₂Ti₄O₉). Essa análise permitiu a determinação da melhor combinação e qual a influência de cada fator nas respostas esperadas (área superficial e volume dos poros).

Resultados e Discussão

Os fatores foram testados de acordo com a Tabela 1.

Nº	[Hexamina] / mol dm ⁻³	Volume de TEOS/mL	Temp. de Calcinação/ºC
01	0,20	25	600
02	0,20	25	500
03	0,20	15	600
04	0,20	15	500
05	0,15	25	600
06	0,15	25	500
07	0,15	15	600
08	0,15	15	500

Tabela 1. Planejamento Fatorial dos Experimentos.

Com base ras combinações propostas pela Tabela 1, os experimentos foram executados e os produtos foram submetidos à análise de área superficial. Os resultados mais significativos neste critério foram os das amostras 04, 06 e 01, sendo estes valores 211,445; 190,258 e 167,413 m 2 g 1 , respectivamente.

Por último foi realizada a análise fatorial dos resultados obtidos, tendo como base os critérios anteriormente citados (área superficial e volume dos poros). Tem-se, que, de acordo com o modelo estatístico:

- O fator que mais contribuiu para formação de uma boa estrutura foi o TEOS;
- O aumento da quantidade de TEOS e da temperatura de calcinação melhorou a estrutura;
- O aumento de todos os fatores também auxilia na formação de uma boa estrutura.

Conforme estas três informações, a amostra com melhor resultado, de acordo com a análise fatorial, é a de numero 01.

Cabe ainda explicar o motivo da discordância entre o melhor resultado estatístico (amostra 01) e o melhor resultado experimental (amostra 04). A análise fatorial leva em consideração a interferência dos fatores em todas os resultados de forma ponderada. Sendo assim, embora estatisticamente o melhor resultado tenha sido o número 01, a melhor resposta experimental, resultado mais importante para esta pesquisa, é a de número 04.

Conclusões

Após análise dos resultados obtidos, pode-se afirmar que a variável mais importante na síntese de titanatos com grande área superficial é a quantidade de TEOS. Obteve-se também que a melhor combinação, de acordo com o modelo estatístico da análise fatorial, ocorre na amostra 01, sendo que este resultado enfatiza a importância da combinação das maiores quantidades para todos os fatores. Experimentalmente, obteve-se como melhor resultado a amostra de número 04.

Agradecimentos

Agradeço à professora Liliane, pelo companheirismo e pela paciência; ao CNPq e aos amigos do Centro Acadêmico de Química (CAQUI).

30ª Reunião Anual da Sociedade Brasileira de Química

Sociedade Brasileira de Química (SBQ)

¹ Clearfield, A. Inorganic Ion Exchange Materials, CRC Press, Boca Raton, V. 4, **1986**, 248-249.

² Wang, Z. M.; Yamashita, N; Kanoh, H. J. C. Int. Sci., 269, **2004**, 283–289

³ Guo, X.; Hou, W.; Yan, Q.; Chen, Yi. Chin. Sci. Bull., 48, **2003**, 101-110.