Componentes voláteis de óleos essenciais de *Peperomia* e toxicidade frente a *Artemia salina*

Patrícia Natália B. de Lira¹ (PG), Joyce Kelly do R. da Silva² (PG), Eloísa Helena A. Andrade² (PQ), Pergentino José da C. Sousa³ (PQ), Nayla Nunes dos S. Silva³ (IC), José Guilherme S. Maia² (PQ). bfplira@yahoo.com.br

Palavras Chave: Peperomia macrostachya, P. rotundifolia, P. pellucida, óleos essenciais, toxicidade.

Introdução

O gênero *Peperomia*, da família Piperaceae, compreende cerca de 1000 espécies¹. São ervas terrestres e aéreas, com folhas pecioladas, cordatas e suculentas, que parasitam diferentes árvores hospedeiras da floresta amazônica. Algumas espécies de *Peperomia* são usadas na medicina popular, como diuréticas, no controle de tosse e arritmia cardíaca², no tratamento de tumores e esterilidade³.

As espécies coletadas foram: *P. macrostachya* (**OPM**), no município de Bujarú, PA; *P. rotundifolia* ("carrapatinho") (**OPR**) e *P. pellucida* ("Erva-de-jaboti") (**OPP**), no município de Ananindeua, PA. Os óleos essenciais foram hidrodestilados com uso de Clevenger e forneceram os seguintes rendimentos: **OPM**: 1,3%, **OPR**: 1.8% e **OPP**: 1,0%. Os componentes voláteis foram identificados por CG e CG-EM. A toxicidade dos óleos foi obtida por bioensaios com *Artemia salina* (larvas de camarão), com a determinação da concentração letal média (CL₅₀).

O objetivo do trabalho foi analisar a composição química dos óleos essenciais das espécies de *Peperomia* coletadas e avaliar o seu grau de toxicidade⁴.

Resultados e Discussão

Os principais componentes identificados no óleo de P. macrostachya foram limoneno (38,3%), espatulenol (33,7%) e epi- α -bisabolol (5,1%). No óleo de P. rotundifolia predominaram decanal (68,1%) e limoneno (24,1%). O óleo de P. pellucida apresentou o dilapiol (39,7%) e o β -cariofileno (10,7%) como seus constituintes majoritários.

Os óleos essenciais (**OPM**, **OPR** e **OPP**) apresentaram CL₅₀ com valores abaixo de 1000 μg/mL que é um indicativo de atividade biológica⁵.

Tabela 1. Valores da CL_{50} para as espécies de *Peperomia*.

Espécies	Concentração (µg/mL)	Mortalidade (%)	CL ₅₀ (µg/mL)*	Coeficiente de correlação
	100	100		
OPM	10	85	9,02 ± 0,37	0,91
	5	65		
	1	0		
	10	100		
OPR	5	75	$1,93 \pm 0,08$	0,96
	0,1	3,33		
	25	100		
OPP	10	23,33	$8,25 \pm 0,16$	0,94
	5	10		
	1	0		

^{*} Média dos valores da CL_{50} \pm desvio padrão.

Conclusões

Os óleos essenciais de P. macrostachya, P. rotundifolia e P. pellucida apresentaram valores muito baixos para a CL_{50} indicando alta toxicidade. Dentre estes o mais tóxico foi o óleo de P. rotundifolia, com um valor da CL_{50} 4 vezes menor (1,93 \pm 0,08).

Agradecimentos

Os autores agradecem o apoio financeiro do Programa de Biodiversidade (PPBio) do MCT.

¹ Departamento de Química, Universidade Federal do Pará, Belém, PA.

² Departamento de Engenharia Química e de Alimentos, Universidade Federal do Pará, Belém, PA.

³Departamento de Farmácia, Universidade Federal do Pará, Belém, PA.

¹ Airy-Shaw H. K. 1987. Willis dictionary of the flowering plants and ferns. 8 th edition, Cambridge University Press, Cambridge.

² Berg, M. E. Van den, 1993. Plantas Medicinais da Amazônia. Contribuição ao Conhecimento Sistemático, 2nd Edition. CNPQ / MPEG, Belém, p. 56.

³ Pimentel, A. A. M. P., 1994. Cultivo de Plantas Medicinais na Amazônia, FCAP, Serviço de Documentação e Informação, Belém (p. 51).

⁴ Lewan, L.; Andersson, M.; Morales-Gomez, P. The use of *Artemia salina* in toxicity testing. Alternatives to Laboratory Animals. 20: 297-301, 1992.

⁵ Meyer, B. N.; Ferrigni, N. R.; Putnam, J. E.; Jacobsen, L. B.; Nichols, D. E.; Mc Laughlin, J. L. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Médica. 45:31-4, 1982.