Determinação espectrofotométrica de níquel (II) em aço utilizando um dioxoleno como reagente cromóforo.

*Wagner José Barreto¹ (PQ); Sônia Regina Giancoli Barreto¹ (PQ); leda Spacino Scarmínio² (PQ); (PG); Mirian de Fátima Soares¹ (IC); Bruno M. O. Silveira (IC), Marcus Vinícios B. de Proença¹ (PG).

Laboratório de Físico-Química Ambiental¹; Laboratório de Quimiometria em Ciências Naturais². Universidade Estadual de Londrina, CCE, Depto de Química, Londrina, PR. *barreto@uel.br

Palavras Chave: Dioxoleno, Espectrofotometria, Níquel, Dopamina.

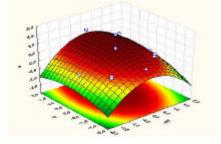
Introdução

O níquel pode ser liberado no meio ambiente por fontes naturais e antropogênicas. Apresenta estado de oxidação variando de (1-) a (4+), mas sua química é dominada pelo nox 2+. Em doses elevadas pode causar irritação gastrointestinal, alterações cardíacas e alergias. A dopamina quando oxidada com O em meio aquoso na presença de Na₂S₂O₃, forma a dopasemiquinona caracterizada por bandas em 290 e 335 nm. A solução aquosa deste composto em meio de Na₂S₂O₃ reage com íons Ni(II) formando um complexo de cor azul com absorção máxima em 589 nm e ? = $1.0 \cdot 10^3 \, \text{L cm}^{-1} \, \text{mol}^{-1}$, tornando-se adequado para a determinação espectrofotométrica de Ni(II)¹. As amostras de aço inox (0,0568 g) foram digeridas em solução de água régia a quente (110 °C). As soluções estoque de Ni(II) e de aço digerido (5 mL), reagiram em soluções de tampão fosfato com 5 mL de solução do reagente cromóforo. O níquel foi determinado por (Espectrômetro Shimadzu AA-6601F) e espectrofotometria UV-vis (espectrofotômetro Milton-Roy Genesys 2). O objetivo deste trabalho foi determinar os melhores parâmetros físicos-químicos a utilização deste novo reagente determinação espectrofotométrica de Ni(II) amostras de aço com aplicações odontológicas.

Resultados e Discussão

Para determinar as melhores condições de reação foi utilizado um planejamento experimental do tipo fatorial 2 para verificar a influência dos fatores pH, tempo de reação (tr), temperatura de reação (T) e concentração do analito [(Ni (II)].

Tabela 1: Planejamento Fatorial 24.


Fatores.	pH.	Tr / min	T/°C	[Ni(II)] / mol L ⁻¹
Nível (-)	6	30	25	6,66 x 10 ⁻⁵
Nível (+)	8	60	45	1,11x 10 ⁻⁴
P.C (0)	7	45	35	8,88x10 ⁻⁵

Foi observado que a concentração de Ni (II), pH, tempo de reação são os fatores significantes na reação, e que a temperatura da reação tem pouca influência na reação. Deste modo, foi realizado um

estudo de Planejamento Composto Central 2 para otimização do pH, tr e [Ni (II)] para a reação.

Tabela 2: Planeiamento Composto Central 2³

_	rabola 2: Flariojamente competite contrai 2					
	а	-1,68	-1	0	+1	+1,68
	[Ni(II)] / 10 ⁻⁴	1,80	1,95	2,17	2,39	2,00
	m ol/L					
	рН	5,8	6,5	7,5	8,5	9,2
	Tr / min	20	30	45	60	70

Como indicado pela superfície de resposta obtida através do planejamento composto central 2³, as melhores condições da reação foram: pH igual a 7,5 e tempo de reação de 45 minutos.

A curva de calibração obtida segue a Lei de Beer na faixa de $3.0x10^{-5}$ a $2.0x10^{-4}$ mol L⁻¹, r =0,9990.

A Tabela 3 mostra os resultados das determinações de Ni(II) por espectrofotometria UV-vis (n=2) e EAA em fio odontológico de aço inox. Os resultados foram comparados ao valor referência da literatura.

Tabela 3: Porcentagem de Ni(II) obtida no aco inox

•	destination age in the restaurance age intext							
	Liga	EAA	Metodologia	Literatura				
		proposta						
	Aço inox	7,66%	8,66%	8,0%				

Conclusões

Este trabalho mostrou que um dioxoleno derivado da oxidação da dopamina pode ser utilizado para a determinação de Ni(II) em aço inox através de uma metodologia simples, em solução aquosa pH 7,5, sem aquecimento e sem necessidade de extração do analito com solvente.

Agradecimentos

Os autores agradecem ao CNPq e Fundação Araucária pelo auxílio financeiro.

30ª Reunião Anual da Sociedade Brasileira de Química

Sociedade Brasileira de Química (SBQ)

¹ Barreto, W. J.; Ando, R A.; Santos, P. S. e Silva, W. P. *Spectrochim. Acta A*, (2006) doi:10.1016/j.saa.2006.12.037.