Estudo espectroscópico de sistemas coloidais de polifosfatotungstênio dopados com Eu³⁺

Anne J. Barbosa^{1*} (PG), Bianca Montanari¹ (PG), Mônica A. S. Alencar¹ (PG), Rogéria R. Gonçalves² (PQ), Younès Messaddeq¹ (PQ), Sidney J. L. Ribeiro¹ (PQ).

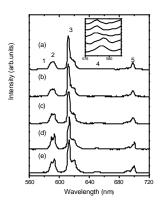
sidney@ig.unesp.br

1. Instituto de Química de Araraquara – UNESP, Araraquara – SP / 2. FFCLRP, Universidade de São Paulo, USP, Ribeirão Preto – SP, Brasil.

Palavras Chave: Luminescência, fosfatos, tungstatos, Eu³⁺

Introdução

Soluções de polifosfato possuem inúmeros aspectos interessantes sendo que dentre eles podemos citar a estabilização de suspensões coloidais^{1, 2}. De fato, a flexibilidade oferecida pelas longas cadeias do polifosfato permitem que os íons metálicos sejam encapsulados na estrutura com as unidades de PO₃ como agentes complexantes. Soluções de polifosfato de sódio dopadas com Eu³⁺ foram estudadas por Dias Filho sendo que um modelo estrutural foi proposto para a interação entre os íons metálicos e as cadeias de polifosfato³.


Por outro lado a química de tungstatos em solução aquosa é bem descrita na literatura. Em soluções com pH aproximadamente 6 há evidências da coexistência das espécies $[WO_4]^{2-}$, $[W_7O_{24}]^{6-}$ e $[H_2W_{12}O_{42}]^{10-}$.

Neste trabalho são mostrados resultados preliminares da caracterização de sistemas coloidais polifosfato – tungstênio dopados com Eu³⁺.

Resultados e Discussão

A figura 1 mostra os espectros de emissão de Eu³⁺ para as diferentes concentrações relativas polifosfatotungstato. A emissão característica com transições a partir do estado excitado ⁵D₀ e apresentando a transição ⁵D₀→⁷F₀ com maior intensidade é observada para todas as amostras. Qualitativamente observa-se um aumento na intensidade relativa de emissão com o aumento na concentração relativa de tungstato. O detalhe mostrado na figura refere-se a transição não degenerada ${}^5D_0 \rightarrow {}^7F_0$ que ocorre em 577.9 nm para a solução de polifosfato pura e também para amostras contendo tungstênio. Observa-se um deslocamento para comprimentos de ondas maiores com o aumento de WO₃. Aumentando a concentração de tungstênio um comportamento não exponencial é observado na curvas de tempo de vida do estado 5D₀. Sugere-se neste caso a presença de pelo menos duas famílias de sítios para os íons Eu³⁺. Observa-se também que a contribuição do tempo de vida mais longo torna-se mais importante em concentrações maiores de tungstênio. Os espectros de absorção no IV e espalhamento Raman mostram que não há quebra 30ª Reunião Anual da Sociedade Brasileira de Química

das cadeias de fosfato pelo tungstênio. Sugere-se portanto que as cadeias de polifosfato estejam estabilizando espécies coloidais de tungstato de Eu³⁺ onde o Eu³⁺ apresente características de emissão intensificada em relação à solução de polifosfato.

Figura 1. Espectro de emissão ($_{\rm esc}$ = 394 nm); (a) NaPO₃; (b) mol%W = 0.5; (c) mol%W = 3; (d) mol%W= 7; (e) mol%W= 31. Numbers denote J levels for the $^5D_0 \rightarrow ^7F_J$ levels

Conclusões

Um novo sistema coloidal polifosfato – tungstênio foi preparado. Os resultados obtidos mostram a possibilidade de utilização deste sistema na preparação de sistemas emissores dopados com terras raras. Sugere-se que para concentrações relativas elevadas de tungstato os íons Eu³+ interagem fortemente com grupos tungstato em espécies coloidais estabilizadas pelas cadeias de polifosfato.

Agradecimentos

FAPESP, CAPES, CNPq

¹ Corbridge, D. E. C., in "Phosphorus: An Outline of its Chemistry, Biochemistry and Technology; Studies in Inorganic Chemistry", (Elsevier; Amsterdam, **1995**).

² Dirjken, A. V., et al. Chem. Phys. Lett., 269 (**1997**) p. 494.

³ Dias Filho, A. D., et al. Langmuir. 21 (2005) p. 1776.