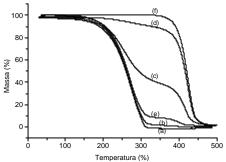
Potenciais catalisadores bimetálicos utilizados na obtenção de biodiesel de babaçu.

Lilia Basílio de Caland* (PG), Lucas Samuel Soares dos Santos (IC), Carla Verônica Rodarte de Moura (PQ), Edmilson Miranda de Moura (PQ


CCN, Departamento de Química - Universidade Federal do Piauí-UFPI - **lilia2005@ufpi.br** *Palavras Chave: catalisador heterogêneo, análise termogravimétrica, biodiesel.*

Introdução

Define-se como biodiesel uma mistura de ésteres alquílicos derivados de óleos vegetais ou gorduras animais, sendo que a forma de obtenção mais utilizada é a transesterificação, onde um triglicerídeo reage com um álcool de cadeia pequena na presenca de um catalisador¹. A maior parte do biodiesel produzido mundialmente deriva de processos de catálise homogênea em meio básico, os quais apresentam alguns incovenientes. O interesse no processo catalítico heterogêneo é a eliminação da reação de saponificação, o aumento no rendimento do produto final, bem como sua pureza e o fato do catalisador ser facilmente recuperado e reutilizado na reação. Neste contexto, o trabalho teve como objetivo preparar e estudar a eficiência de compostos bimetálicos, CoO/Al₂O₃ e MnO/Al₂O₃ na obtenção do biodiesel de babaçu via transesterificação.

Resultados e Discussão

De acordo com a literatura, para catalisadores convencionais utiliza-se 100% de excesso de metanol na transesterificação. Neste trabalho sintetizou-se quatro biodieseis, utilizando-se 100% e 500% de excesso de metanol, com tempo de 12 e 24 horas de reação à temperatura ambiente. A quantidade de catalisador utilizada nestes experimentos foi de 2,5 % em massa, em relação ao óleo. A Figura 1 mostra as curvas termogravimétricas deste estudo utilizando-se como catalisador CoO/Al₂O₃

Figura 1. Curvas termogravimétricas: (a) 500%/24h, (b)100%/24h, (c) 500%/12h, (d) 100%/12h, (e) Biodiesel com NaOH (f) óleo de babaçu.

Comparando-se as curvas termogravimétricas (Figura 1), pôde-se perceber que a melhor condição encontrada foi a **b**. Diante destes resultados, realizou-

se a síntese do biodiesel utilizando-se CoO/Al₂O₃ (BBCo) e MnO/Al₂O₃ (BBMn) como catalisadores, na condição b. Os biodieseis foram caracterizados por análises físico-químicas, termograviméticas e de RMN. Suas curvas apresentaram-se bastantes similares, com pontos de ebulição, em torno de 230°C. Os espectros de RMN de ¹H dos biodieseis obtidos apresentaram um singleto na região de δ 3,45- 3,65, característico dos hidrogênios oximetílicos. Além disso, o biodiesel BBMn, apresentou sinais residuais de hidrogênios oximetilênicos que ocorrem na região de δ 4,10 - 4,35 e δ 5,25, o que pode ser atribuído a conversão parcial do óleo. Já o espectro de RMN de ¹H do biodiesel BBCo, não apresentou tais sinais residuais. O rendimento da reação foi calculado por meio da equação mostrada abaixo², que relaciona a área integrada dos sinais dos grupos metoxílicos δ 3.7) e dos CH_2 α -carbonílicos (δ 2.3) dos ésteres metílicos, dos espectros de RMN de ¹H.

. C = 100 X $(2A_{ME})/(2 A_{CH_2})$

O resultado encontrado foi: BBĆo (98,23%) e BBMn (68,10%).

Análises físico-químicas dos biodieseis:

Parâmetros	BBCo	BBMn	ANP-042
Viscosidade a 40 °C (cSt)	4,34	4,35	Max. 6,0
Densidade a 20 °C (g/cm³)	0,88	0,88	0,88
Ponto de fulgor (°C)	110	112	Min. 100
Acidez (mg KOH/1g)	0,221	0,026	0,8
Glicerina livre (% massa)	0,003	0,015	0,02
Teor de enxofre (% massa)	0,01	ND	Anotar

ND = Não detectado pelo método

Observa-se que os parâmetros dos biodieseis, tanto usando o catalisador BBCo como o BBMn, estão de acordo com as exigências da ANP.

Conclusões

Diante dos resultados apresentados pode-se concluir que os catalisadores de CoO e MnO suportados em alumina são potenciais catalisadores para a síntese de biodiesel.

Agradecimentos

30ª Reunião Anual da Sociedade Brasileira de Química

Sociedade Brasileira de Química (SBQ)

A CAPES e FAPEPI, FINEP, LAPETRO – UFPI e Usina de Biodiesel UFPI.____

¹ Fuduka, H.; Kondo, A.; Noda, H.; *J. Biosci. Bioen.*, **2001**, *92*, 405.

² Meher, L. C., Vidya, S. D.; Naik, S. N.; Renewable and Sustainable Energy Reviews, **2006**, 10, 248.