Síntese de Complexos de Paládio e Aplicação em Reações de Acoplamento C-C

Cíntia Akemi Sato (PG), Regina Buffon* (PQ)

Instituto de Química – Universidade Estadual de Campinas, Caixa Postal 6154, 13084-971 Campinas – SP * rbuffon@iqm.unicamp.br

Palavras Chave: catálise, complexos de paládio, acoplamento C-C

Introdução

Reações em que há a formação de ligação carbonocarbono são muito importantes, pois permitem a preparação de moléculas complexas a partir de precursores simples. Desta forma as reações catalisadas por paládio são muito importantes em síntese orgânica, uma vez que permitem a formação carbono-carbono entre ligações insaturados, constituindo um método simples e de uso geral. Dentre as reações mais conhecidas estão as de Heck e os acoplamentos de Suzuki e de Stille. Ciclofosfazenos têm atraído atenção por duas razões principais: 1) o ataque a ligações P-X em [NPX2]n (X = Cl ou F; n = 3 ou 4) por muitos agentes nucleofílicos é a principal rota para a síntese de organociclofosfazenos contendo ligações P-N, P-O-P, P-S ou PC exocíclicas; 2) a relação existente entre esses sistemas cíclicos e os polifosfazenos, polímeros de alto peso molecular que constituem a maior família de polímeros inorgânicos conhecidos. O uso de ciclofosfazenos como ligantes para metais de transição é relativamente recente, e ainda não foi bem explorado.

Neste trabalho, complexos de paládio derivados do ciclofosfazeno foram sintetizados e suas atividades catalíticas foram testadas em fase homogênea.

Resultados e Discussão

O ligante foi sintetizado de acordo com a figura 1.

$$\begin{array}{c} Cl \\ Cl \\ Pl \\ Cl \\ \end{array} \begin{array}{c} PPh_2 \\ PPh_2 \\ \hline \\ Cl \\ \end{array} \begin{array}{c} PPh_2 \\ PPh_2 \\ \hline PPH_2 \\ \hline \\ PPH_2$$

Figura 1. Preparação do ligante.

Com este ligante foram preparados complexos de paládio em diferentes proporções de ligante:paládio, variando desde 1:1 até 1:4. Estes foram testados, inicialmente, na reação de acoplamento de Suzuki. Os resultados estão apresentados na tabela 1.Como os complexos com as relações 1:3 e 1:4 apresentaram resultados bons e semelhantes, com o de 1:3 ($N_3P_3(O-C_6H_4-p-P-(C_6H_4)_2)_6.3Pd$) foi feito o estudo para a reação de Heck por utilizar menos Pd por complexo, que desfavorece a lixiviação do mesmo.

30ª Reunião Anual da Sociedade Brasileira de Química

Tabela 1. Atividade dos catalisadores em reações de acoplamento C-C.

Catalisador	Reação	Halet o arila	Tempo/ Temp.	TON	Ref
PdCl ₂ ^(a)	Heck	PhI	5h/90°C	670	1
Pd(PPh ₃) ₄ ^(a)	Heck	PhI	5h/90°C	61	1
PPh_2 O PPh_2	Heck	PhI	2h/90°C	980	1
h ₂ P. PPh ₂ (a)	Heck	PhBr	60h/90°C	990	'
Pd(OAc) ₂ /PPh ₃ ^(b)	Suzuki	PhBr	24h/70°C	97,4	2
Pd(OAc) ₂ /PPh ₃ / sol-gel ^(b)	Suzuki	PhBr	24h/70°C	26,5	2
Pd(OAc) ₂ /(bifenil)PBu ₂ (c)	Suzuki	PhCI	5h/t. a.	97,7	2
Pd(OAc) ₂ /(bifenil)P ^t Bu ₂ / sol-gel ^(c)	Suzuki	PhCl	5h/t. a.	24,7	2
PdCl ₂ (PPh ₃) ₂ / sol-gel ^(d)	Heck	Phl	12h/110°C	83	3
N ₃ P ₃ (O-C ₆ H ₄ -p-P- (C ₆ H ₄) ₂) ₆ .1Pd ^(b)	Suzuki	PhBr	24h/70°C	12	
N ₃ P ₃ (O-C ₆ H ₄ -p-P- (C ₆ H ₄) ₂) ₆ .2Pd ^(b)	Suzuki	PhBr	24h/70°C	26,5	
N ₃ P ₃ (O-C ₆ H ₄ -p-P- (C ₆ H ₄) ₂) ₆ .3Pd	Suzuki ^(b)	PhBr	24h/70°C	86	
	Heck ^(e)	PhBr	6h/140°C	260 0	
N ₃ P ₃ (O-C ₆ H ₄ -p-P- (C ₆ H ₄) ₂) ₆ .4Pd ^(b)	Suzuki	PhBr	24h/70°C	88	

^{*} Todas as reações de Heck usaram estireno como substrato e as de Suzuki, ácido metóxi fenilborônico. As bases utilizadas nas reações foram: (a) (n-Bu)₃N, (b) K₃PO₄, (c) KF, (d) Pr₃N, (e) Et₃N; e os solventes: (a) acetonitrila, (b) e (c) THF, (d) tolueno, (e) DMF.

Conclusões

Os resultados catalíticos iniciais são bastante promissores para a continuação do estudo do complexo e seus derivados, principalmente quanto à perspectiva de estudos em catálise heterogênea.

Agradecimentos

Os autores agradecem à FAPESP (auxílio à pesquisa) e ao CNPq (auxílio à pesquisa e bolsa de PG e PQ).

Sociedade Brasileira de Química (SBQ)

¹ Chandrasekhar, V.; Athimoolam, A; Srivatsan, S.G.; Sundaram, P.S.; Verma, S.; Steiner, A.; Zacchini, S. e Butcher, R. Inorg. Chem. **2004**, 12, 166-172.

 $^{^2}$ Rios, R.M.; Lima, L.C.; Paula V.I. e Buffon, R. $29^{\rm a}$ Reunião Anual da SBQ 2006, CT -028.

³ Hamza, K.; Abu-Reziq, R.; Avnir, D. e Blum, J. *Org. Lett.* **2004**, 6, 925-927.