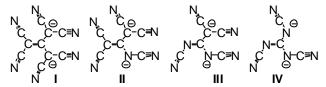
Completion of the Pseudocarbonate Series $(C_{2n+2}N_6)^{2-}$ with n = 1-4: Coordination Polymers with new Polynitrile Anions


Doris Ernsthäuser (PG), Johannes Beck (PQ)*

Institut für Anorganische Chemie der Universität Bonn, Germany

Keywords: Polynitrile Anions, Coordination Polymers

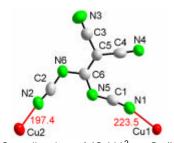
Introduction

Due to the -I and -M effect of the nitrile groups the acidic strengths of cyanocarbon acids rival those of the mineral acids¹. Their corresponding bases, the polynitrile anions, are highly conjugated. The high number of terminal and non terminal nitrogen s-donor atoms, which can coordinate to different metal cations, makes it possible to synthesize coordination polymers of different dimensionalities and unusual magnetic properties². The anions $(C_{2n+2}N_6)^{2-}$ (n = 1-4) are related to carbonate in the sense that one substituted chalcogen atom is pseudochalcogens NCN or C(CN)₂³. Exponents I and IV (Fig. 1) of this series of chalcogenide derivatives of carbonate are already known^{4,5}. For the first time we now succeeded in synthesizing the two missing links the pseudocarbonate series, the cyanocarbanions 2-cyanoimino-1,1,3,3tetracyanopropandiide, $(C_8N_6)^{2-}$ (II) and N, N', 2, 2tetracyanoacetamidinate, (C₆N₆)²⁻ (III) (Fig. 1).

Figure 1. The series of the chalcogenide derivatives of carbonate.

Thermolysis of the mercury complexes of these polynitrile anions leads to $(C_{n+2}N_6)_x$ polymers which allows for a detailed investigation of these amorphous binary networks.

Results and Discussion


The pseudocarbonate anions $(C_8N_6)^{2-}$ (II) and $(C_6N_6)^{2-}$ (III) have been characterized by elemental analyses, IR, Raman and ¹³C-NMR spectroscopy of their potassium salts, which were prepared in a similar way like described by Middleton et al. for the synthesis of Na₂C₁₀N₆⁴. The syntheses have to be confirmed under inert conditions but the resulting salts are stable against water and air. The crystal structures of $[Co(C_8N_6)(C_5H_5N)_4]\cdot(C_5H_5N)$ (1) (Fig. 2) $[Cu(C_6N_6)(C_5H_5N)_4]$ (2) (Fig. 3) have been determined X-ray-diffraction. (1) (monoclinic, $P2_1/n$. Å, a=9.7329(3)b=23.2738(8), c=13.7545(4)

 \mathcal{B} =91.327(2)°) can be prepared by metathesis from $Co(NO_3)_2$ and $(PPh_4)_2C_8N_6$ in pyridine.

Figure 2. Coordination of $(C_8N_6)^{2-}$ to Co(II) in (1).

(2) (monoclinic, C2/c, a=16.9268(7), b=18.6169(9), c=16.3383(8) Å, $B=94.045(3)^{\circ}$) can be prepared by metathesis from $CuCl_2$ and $(PPh_4)_2C_6N_6$ in pyridine.

Figure 3. Coordination of $(C_6N_6)^{2-}$ to Cu(II) in (2).

Both structures are 1 D-polymers with μ_2 coordinating cyanocarbanions. The octahedral coordination sphere of the Cu(II) cations in **(2)** is distorted due to the Jahn Teller effect.

Conclusion

The postulated polynitrile anions $(C_8N_6)^{2-}$ (II) and $(C_6N_6)^{2-}$ (III) (Fig. 1) can actually be synthesized and have similar stability like the already known anions $(C_{10}N_6)^{2-}$ (I) and $(C_4N_6)^{2-}$ (IV) (Fig. 1) of this series. All four anions form coordination polymers with transition metal cations^{2,6}.

Acknowledgements

We thank Dr. J. Daniels for the recording of the diffraction data sets.

¹ Z. Rappoport, *The Chemistry of the Cyano Group*, Interscience Publishers, London, **1970**, p. 614f.

² J. Sala Pala, S. Triki, M. Decoster, P. Molinié, L. Toupet, *Angew. Chem.* **1999**, *111*, 155.

³ L. Jäger, H. Köhler, Sulfur Reports 1992, 12, 159.

⁴ W. J. Middleton, V. A. Engelhardt, *J. Am. Chem. Soc.* **1958**, *80*, 2795.

⁵ R. P. Subrayan, A. H. Francis, J. W. Kampf, P. G. Rasmussen, *Chem. Mater.* **1995**, *7*, 2213.

Griefff, Match. 1936, 7, 2216.
J. Beck, D. Ernsthäuser, 13. Vortragstagung der Wöhler Vereinigung für Anorganische Chemie, Aachen, Germany 2006.