Síntese de novos eninos conjugados através do uso de acetiletos de lítio e ß-dimetilaminovinil cetonas.

Marcos Antônio Pinto Martins¹ (PQ), Marcelo Rossatto(PG), Fernanda A. Rosa(PG), Pablo Machado(PG), Nilo Zanatta(PQ) e Helio Bonacorso(PQ).

Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS. Brasil

E-mail: mmartins@base.ufsm.br.

Palavras Chave: eninos, acetilenos, enaminonas, organolítio.

Introdução

Eninos conjugados são muito utilizados como blocos construtores em síntese orgânica¹. Eles também integram como partes fundamentais de moléculas com atividade antitumoral², antifúngica e de terapia anti-retroviral.

O método mais empregado para a síntese de eninos tem sido reações de acoplamento entre alquinos terminais e haletos de vinila, empregando paládio como catalisador. Entretanto a obtenção de eninos através da reação entre alquinos terminais e cetonas a-ß insaturadas, rão tem sido muito divulgada. Este trabalho tem como objetivo a síntese de eninos, através da reação entre alquinos terminais e ß-dimetilaminovinil cetonas.

Resultados e Discussão

Os eninos (6-9) foram obtidos através de duas etapas reacionais: (i) geração do acetileto de lítio e (ii) adição das enaminonas e do borotrifluor eterato sobre o acetileto de lítio. A primeira etapa consiste na formação do acetileto de lítio a partir da reação do alquino terminal com nbutil lítio a uma temperatura de -20°C, utilizando THF como solvente. A seguir, foi adicionado uma mistura (2:1) do borotrifluor eterato e da ß-dimetilaminovinil cetonas (2-5) sobre o acetileto de lítio a uma temperatura de -15°C, deixando reagir por 2 horas sob esta temperatura. Após este período deixou-se reagir por 16 horas sob temperatura ambiente (Figura 1).

Os eninos foram isolados da mistura reacional a partir da extração com clorofórmio, levando a rendimentos entre 63-80 %. Os compostos obtidos foram caracterizados por RMN de H e C¹³, espectrometria de massas, e infravermelho. Em todos os casos a adição do acetileto de lítio foi regioespecífica, não havendo adição no carbono carbonílico, e também produzindo somente o enino com configuração E.

As ß-dimetilaminovinil cetonas foram obtidas de acordo com uma metodologia desenvolvida em nosso laboratório³.

Conclusões

As ß-dimetilaminovinil cetonas, mostraram-se bons precursores para a síntese de eninos. Isto pode ser comprovado tanto pelos rendimentos, quanto pela regioespecificidade apresentada. O uso de 2 equivalentes de borotrifluor eterato mostrou-se necessário uma vez que a utilização de 1 equivalente diminuiu o rendimento da reação.

Agradecimentos

CAPES, FAPERGS e CNPq

¹Feuerstein, M.; Chahen, L.; Doucet, H.; Santelli, M. *Tetrahedron*, **2006**, *62*, 112.

²Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyake, T.; Oki, T.; Kawaguchi, H.; Van Duyne, G. D.; Clardy, J. *J. Antibiot.* **1989**, *42*, 1449.

³Rosa, F. A.Dissertação de Mestrado, UFSM, 2005

$$N(Me)_2$$
 i , ii ii $63-80\%$ R $6a-b$, $7a-b$, $8a-b$, $9a-b$

(*i*)= BuLi, THF, 30 minutos (*ii*)= BF₃OEt₂, THF, -15°C, 2 h, depois 16h ta. R= Ph (**a**), *n*-Pent (**b**)

2,6 ($R^1 = F$), **3,7** ($R^1 = C1$), **4,8** ($R^1 = Br$), **5,9** ($R^1 = NO_2$)

Figura 1: Esquema reacional