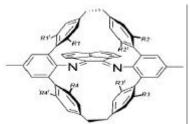
Estudo por cálculos semiempíricos e *ab initio* dos isômeros de um ciclofano

Daví A. C. Ferreira* (PG), Mario R. Meneghetti (PQ), Simoni M. P. Meneghetti (PQ). <u>davialexsandro @yahoo.com.br</u>

Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, Cidade Universitária, Maceió-AL

Palavras Chave: Ciclofano, Semi-empírico, DFT, Conformação molecular.


Introdução

O desenvolvimento de ligantes ciclofanos tem permitido a geração de catalisadores para polimerização de olefinas que levam a produção de poliolefinas especiais^{i,ii}. Em complexos quadradoplanos de Pd e Ni, os ligantes ciclofanos atuam como bloqueadores dos sítios de coordenação axial do átomo metálico, diminuindo a probabilidade da reação de terminação por troca de olefinas.^{1,2}.

Com a finalidade de investigar propriedades termodinâmicas dos produtos formados na síntese do ciclofano, foram realizados cálculos através de técnicas *Ab Initio* (Mecânica Quântica) e *Semiempíricas*. Para tal, foram utilizados os programas *Gaussian03ⁱⁱⁱ e Spartan 04^{iv}*, para fins de comparação energética, distribuição de confôrmeros e análise populacional (distribuição de Boltzmann).

Resultados e Discussão

A partir de uma análise teórica simples dos possíveis produtos de reação (isômeros), que são mostrados na Figura 1, foi realizado um estudo eletrônico e termodinâmico.

ESTRUTURA	R1	R1`	R2	R2`	R3	R3`	R4	R4`
FFFF	CH₃	Н	CH₃	Н	CH₃	Н	CH ₃	Н
FFTT	CH₃	Н	CH₃	Н	Н	CH₃	Н	CH₃
FTFT	CH₃	Н	Н	CH₃	CH ₃	Н	Н	CH ₃
TTTT	н	CH₃	н	CH₃	н	CH ₃	н	CH ₃

Figura 1. Estruturas dos ligantes ciclofanos investigados neste trabalho.

Baseado em dados de difração de raios X de análogos já sintetizados e de procedimentos computacionalmente simples e de baixo custo, observou-se que os átomos de nitrogênio da diimina se encontram em uma cavidade. Foi observado que o isômero FTFT é o que possui o menor calor de formação, ou seja, o termodinamicamente mais estável, como indicado na tabela 2. Desta forma, a reação de síntese do ciclofano seria altamente

seletiva em relação ao isômero FTFT, desde que a reação seja regida por um controle termodinâmico. Cabe salientar que este isômero apresenta uma simetria C_2 sem plano de simetria.

Tabela 2. Propriedades eletrônicas e termodinâmicas calculadas a partir do método semiempírico PM3. ⁴

Isômero	HOMO (eV)	LUMO (eV)	?H _f (kcal/mol)	S° (J/molK)	Boltzmann
FFFF	-8.71	-0.88	187.75	1153.43	0.178233
FFTT	-8.70	-0.89	188.15	1136.60	0.086681
FTFT	-8.69	-0.90	186.91	1132.08	0.715127
ПП	-8.68	-0.89	189.02	1144.00	0.019957

Foi empregada a Teoria do Funcional da Densidade a nível B3LYP com o conjunto de base LanL2DZ³ para uma melhor descrição do isômero termodinamicamente mais estável, e com tal metodologia foram obtidos o calor de formação de estrutura pontual de -2348,217803 hartree (Hartree=627,51 kcal/mol) e momento de dipolo 3,51D (debye).

Conclusões

A estrutura FTFT é a termodinamicamente preferida, por apresentar poucas interações repulsivas entre os grupos na estrutura em questão. É comum esperar para esta espécie química uma maior participação na constituição populacional dos produtos formados, pois se sabe que, de acordo com a Teoria de Distribuição de Boltzmann, a natureza tende a selecionar corpos que possuem baixa energia. Além disso, a estrutura do ligante FTFT é adequada tanto eletrônica quanto estéricamente, permitindo a formação do complexo desejado de Pd(II).

Agradecimentos

Os autores agradecem ao BNB pelo apoio financeiro ao projeto. DACF agradece a Capes pela bolsa.

30ª Reunião Anual da Sociedade Brasileira de Química

¹ Camacho, D.H.; Salo, E.V.; Ziller, J.W.; Guan, Z. Angew. Chem. Int. Ed. **2004**, 43, 1821.

^{II} Froese, R.D. J., Musaev, D.G.; Morokuma, K.; *J. Am. Chem. Soc.* **1998**, *120*, 1581.

Foresman J. B., Frisch Æ.: "Exploring Chemistry with Electronic Structure Methods"., 2d. ed. Gaussian Inc., Pittsburgh, PA. 1998.

iv SPARTAN '04, Wavefunction Inc, 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612, U.S.A., **2003**.