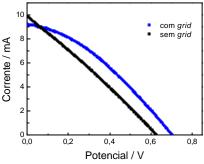
Introdução de *Grids* metálicos em células solares de TiO₂/corante com área de 4,5 cm²: análise do desempenho

Jilian Nei de Freitas^{* 1} (PG), Wellington L. Caetano² (IC), José A. Diniz² (PQ), Newton C. Frateschi² (PQ), Ana Flávia Nogueira¹ (PQ). *jfreitas@iqm.unicamp.br*

¹Laboratório de Nanotecnologia e Energia Solar, Instituto de Química – UNICAMP, Campinas SP, CP 6154, CEP 13084-871; ²Centro de Componentes Semicondutores, UNICAMP, Campinas SP, CP 6061, CEP 13083-870.


Palavras Chave: célula solar, eletrólito polimérico, grid metálico.

Introdução

As células solares de TiO₂/corante são uma alternativa promissora para a produção de energia elétrica de forma limpa. A substituição do eletrólito líquido usualmente empregado nesses dispositivos por eletrólitos sólidos poliméricos aumenta sua aplicabilidade, além de simplificar o procedimento de montagem e minimizar o risco de vazamento.1 Em nosso laboratório mostramos que a eficiência de conversão de energia obtida empregando eletrólito sólido é bastante elevada para dispositivos com área ativa menor que 1,0 cm². Contudo, a eficiência de dispositivos com maior área ativa precisa ser melhorada para permitir sua comercialização. Em trabalhos recentes, mostramos que a baixa eficiência obtida para células com grande área ativa se deve principalmente à resistividade superficial do substrato transparente de FTO-vidro (fluorine tin oxide).2 Neste trabalho, mostramos que a eficiência dessas células pode ser melhorada pela inserção de grids metálicos no substrato de FTO.

Resultados e Discussão

Linhas de níquel com 500 μ m de largura (*grids*) foram depositadas sobre a superfície de um substrato de FTO-vidro, utilizando fotogravação, lift-off e evaporação térmica. A espessura da camada de Ni depositada foi de 200 nm. Esses substratos foram usados na montagem de células solares de TiO $_2$ /corante. Também foram utilizados substratos de FTO-vidro sem níquel, como padrão.

Figura 1. Curvas FV para células solares com área ativa de 4,5 cm², irradiadas a 100 mW cm⁻².

A Figura 1 mostra as curvas de correntepotencial (I-V) obtidas sob irradiação policromática de
100 mW cm⁻² para células solares com área ativa de
4,5 cm². Para o dispositivo preparado com substrato
com níquel, o comportamento é de diodo, como
esperado para uma célula solar. Já o dispositivo
preparado sem níquel apresenta um comportamento
ôhmico, ou seja, maior resistência em série. Os
parâmetros obtidos através das curvas I-V estão
apresentados na Tabela 1. Fica evidente a melhora
das propriedades da célula solar após adição do *grid*de níquel ao substrato de FTO. O aumento do fator de
preenchimento é outro indicativo da redução da
resistência interna do dispositivo e da melhora dos
contatos elétricos.

Tabela 1. Corrente de curto circuito (Isc), potencial de circuito aberto (Voc), potência máxima (P), fator de preenchimento (FF) e eficiência de conversão de energia (η) para células solares preparadas com substrato com e sem *grid* de níquel.

Substrato	Isc	Voc	Р	FF	η
	/ mA	/ V	/ mW	/%	/%
Sem grid	9,87	0,63	1,68	27	0,42
Com grid	10,08	0,71	2,26	32	0,56

Conclusões

A inserção de *grids* de níquel em substratos de FTO-vidro leva à melhora das propriedades elétricas de células solares de TiO $_2$ /corante com eletrólito polimérico. Contudo, os valores obtidos de FF e η ainda são baixos se comparados aos das células com 1,0 cm 2 de área ativa. Ainda é necessária uma otimização da espessura das linhas metálicas, com a finalidade de diminuir ainda mais a resistência em série do dispositivo.

Agradecimentos

Fapesp (05/56924-0; 04/06031-6), CNPq.

30ª Reunião Anual da Sociedade Brasileira de Química

¹ Nogueira, A. F.; Longo, C.; De Paoli, M. A. Coordin. Chem. Rev. **2004**, 248, 1455.

Sociedade Brasileira de Química (SBQ)

² de Freitas, J. N.; Nogueira, V. C.; Ito, B. I.; Soto-Oviedo, M. A.; Longo, C.; De Paoli, M. A.; Nogueira, A. F. *Int. J. Photoenergy* **2006**, *75483*.