# Relação da Estrutura Química e Solubilidade de Complexos de Estanho (IV) na Reação de Metanólise do Óleo de Soja

Davi A. C. Ferreira<sup>1</sup> (PG), Mario R. Meneghetti<sup>1</sup> (PQ), Simoni M. P. Meneghetti<sup>1</sup> (PQ), Carlos R. Wolf <sup>2</sup> (PQ), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, Cidade Universitária, Maceió - AL \*\*smpm@qui.ufal.br\* 2 Faculdade de Química, Universidade Luterana do Brasil, Rua Miguel Tostes 101, Canoas-RS

Palavras Chave: biodiesel, estanho(IV), transesterificação, metanólise, cálculos teóricos

### Introdução

Compostos a base de estanho(IV) são empregados, industrialmente, como precursores catalíticos em reações de esterificação, transesterificação e policondensação, para obtenção de polímeros e intermediários <sup>1</sup>. Devido a sua importante atividade catalítica, pode-se vislumbrar a ampliação de seu uso em catálise, com perspectivas de síntese de novos complexos, que possuam potencial em reações de interesse comercial e estratégico, como a reação de transesterificação para obtenção de biodiesel <sup>2</sup>.

Com o objetivo de avaliar o comportamento de complexos de estanho(IV) na reação de metanólise do óleo de soja foram avaliadas experimentalmente , paralelamente, alguns cálculos teóricos confirmaram as tendências observadas.

## Resultados e Discussão

Na Figura 1 estão apresentados os resultados de rendimento em monoésteres metílicos (% FAMES), em função do tempo, para reações conduzidas na proporção molar MeOH/óleo/cat. = 400/100/1 na presença dos complexos de estanho (IV): ácido butilestanóico (( $C_4H_9$ )SnO(OH)), óxido de dibutil estanho (( $C_4H_9$ )2SnO) e dibutil dilaurato de estanho (( $C_4H_9$ )2Sn( $C_{12}H_{23}O_2$ )<sub>2</sub>).

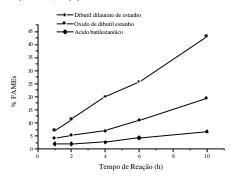



Figura 1. Rendimento da metanólise do óleo de soja em função do tempo de reação e do tipo de catalisador.

Existe uma influência da composição química do catalisador sobre a eficiência da reação<sup>3</sup>. A ordem, em termos de melhor desempenho, para o dibutil dilaurato de Sn, seguido do óxido de dibutil Sn e ácido butilestanóico está relacionada à composição química, principalmente no que diz respeito à presença de cadeias alquílicas (em maior número ou mais longas) nas estruturas dos complexos, conferindo diferentes graus de solubilidade, conforme Tab. 1.

**Tab.** 1: Solubilidade dos complexos em metanol, óleo de soja e respectivos FAMEs. Limite de detecção é de 0,01 g/mL.

Solubilidade (g/mL) a 40°C

| Catalisador             | Metanol   | Oleo de<br>soja | FAMEs   |
|-------------------------|-----------|-----------------|---------|
| Dibutil dilaurato de Sn | 0.02      | solúvel         | solúvel |
| Oxido de dibutil Sn     | Insolúvel | < 0.01          | 0.02    |
| Àcido butilestanóico    | Insolúvel | < 0.01          | < 0.01  |

Cálculos em nível semiempírico com conjunto de base PM3<sup>4</sup> mostraram que duas propriedades determinam a reatividade das espécies estudadas: solubilidade e energia dos orbitais de fronteira (Tab. 2). A maior atividade observada para o dibutil dilaurato de Sn pode ser, em teoria, justificada pelo seu pequeno momento de dipolo, que o aponta como muito solúvel no meio reacional, garantindo maior probabilidade da interação catalisador-substrato. A análise das propriedades eletrônicas em termos de orbitais de fronteira pode ser feita para óxido de dibutil Sn e ácido butilestanóico, que apresentam momentos de dipolo semelhantes (baixa solubilidade). Admitindo solubilidades próximas, a probabilidade da interação cat.-substrato deve ser a mesma para ambos; porém há uma preferência dessas interações para óxido de dibutil Sn devido a menor energia de LUMO em relação a essa energia para ácido butilestanóico.

Tab. 2: Parâmetros calculados teoricamente

| Tab. 2.1 drametres edicalaces technolineme |                   |              |              |               |  |  |
|--------------------------------------------|-------------------|--------------|--------------|---------------|--|--|
| Catalisador                                | ΔHf<br>(Kcal/mol) | HOMO<br>(eV) | LUMO<br>(eV) | DIPOLO<br>(D) |  |  |
| Dibutil dilaurato de<br>Sn                 | -61,52            | -10,62       | -0,97        | 3,03          |  |  |
| Oxido de dibutil Sn                        | -26,31            | -10,08       | -1,16        | 4,35          |  |  |
| Àcido butilestanóico                       | -349,10           | -10,13       | -0,75        | 0,41          |  |  |

### Conclusões

A ordem de eficiência (dibutil dilaurato de estanho > óxido de dibutil estanho > ácido butilestanóico) está relacionada à estrutura química dos catalisadores e a solubilidade destes no meio reacional. Essas tendências foram confirmadas através de cálculos teóricos.

# Agradecimentos

CTEnerg-PROSET, CNPq, CAPES, FAPEAL, FAPERGS

<sup>&</sup>lt;sup>1</sup> Fazenda, J.M.R.; *Tintas e Vernizes -Ciência e Tecnologia*, 20 <sup>ed.</sup>, Abrafati, São Paulo, **1995**.

<sup>&</sup>lt;sup>2</sup> F.R. Abreu, D.G. Lima, E.H. Hamu, S. Einloft, J.C. Rubim, P.A.Z Suarez., J. Am. Oil Chem. Soc. **2003**, 80, 601.

<sup>&</sup>lt;sup>3</sup> D.A.C. Ferreira, M.R. Meneghetti, S.M.P. Meneghetti, C.R. Wolf, Applied Catalysis A: Gen. **2007**, *317*, 58–61

<sup>&</sup>lt;sup>4</sup> SPARTAN'04 (Wavefunction Inc.)