Síntese e Caracterização de um Novo Complexo de Ni(II) contendo Carbonato na Esfera de Coordenação.

Janiele Fregulia Scarabelot^{1*} (IC), Suzana Cimara Batista^{1*} (PQ) janielefs @ac.unisul.br

¹Centro Tecnológico – Universidade do Sul de Santa Catarina – 88704-900 - Tubarão – SC.

Palavras Chave: composto de coordenação, síntese, dióxido de carbono

Introdução

O estudo de complexos que incorporam dióxido de carbono da atmosfera é de especial interesse, tendo em vista a proteção ambiental com a aplicação da reação para a eliminação de CO2 presente no ar. Nesse sentido, a fixação de dióxido de carbono por complexos de metais de transição e a sua conversão em compostos químicos úteis são de grande importância para a química inorgânica. Em muitos sistemas, a inserção de CO₂ é iniciada pelo ataque nucleofílico do ânion ligante, que pode ser um grupo oxo ou hidróxido, ao CO2. A reação resulta na formação de um complexo carbonato. Um grande número de complexos de metais de transição contendo CO2 já foram sintetizados e caracterizados, entanto. maioria destes. а espontaneamente dióxido de carbono em condições atmosféricas.1,2 Nesse sentido, neste trabalho é apresentado a síntese e caracterização de um composto de coordenação formado pelo íon metálico Ni(II) e o ligante H_stea (tris(2-hidroxietil)amina). Este composto fixa CO2 e forma, deste modo, um ambiente de coordenação em que apresenta o íon carbonato coordenado.

Resultados e Discussão

O composto deste trabalho. foi preparado a partir do composto mononuclear [Ni(H₃tea)(H₂O)₂]SO₄ (1), já descrito anteriormente³. Para a síntese de 2, foi necessário 290 mg de 1 diluídos em 20 mL de metanol e 10 mL de água sob agitação e aquecimento a 50° C. Em seguida, resfriou-se a solução até a temperatura ambiente, e borbulhou-se CO2 gasoso na solução de 1 seguido pela adição de 1 mL de uma solução aquosa de hidróxido de lítio (1 x 10⁻² mol.L⁻¹). O composto 2 formado, precipitou como produto desta reação na forma de micro cristais de coloração azul-esverdeado. O rendimento da reação foi de 45 %.

A análise elementar de carbono, hidrogênio e nitrogênio foi realizada para o composto **2**, e os resultados estão em concordância com a fórmula

molecular proposta: $Ni_4C_{25}H_{88}N_4O_{41}S_3$, sendo os valores: Calculado: C: 20,97%; H: 6,19%; N: 3,91%; S: 6,72% e Encontrado: C: 20,04%; H: 5,33%; N: 3,86%; S: 6,44%.

Foi realizado um estudo por espectroscopia na região do infravermelho em pastilha de KBr do composto $\bf 2$ e apresenta bandas características do ligante, do grupo carbonato e sulfato: $3417~{\rm cm}^{-1}~v({\rm C-H_{H2O}}),~2967~{\rm cm}^{-1}~v({\rm C-H_{CH2}}),~1333~{\rm cm}^{-1}~\delta({\rm O-H})~e~1042~{\rm cm}^{-1}~v({\rm C-O_{alcool}}).$ As bandas em 1555 cm $^{-1}$ e 1437 cm $^{-1}$ correspondem ao $v({\rm C-O})$, que caracteriza a coordenação do grupo ${\rm CO_3}$, as quais não estão presentes no espectro do composto de partida ($\bf 1$). A banda em 1122 cm $^{-1}$ evidência a presença do ânion ${\rm SO_4}^2$.

Conclusões

O composto **2** sintetizado e caracterizado apresenta características interessantes na esfera de coordenação. A presença do grupo carbonato proveniente da fixação de CO₂, torna este composto de interesse entre os compostos que fixam CO₂ atmosférico.

Agradecimentos

PUIP

¹ Kitajima, N.; Hikichi, S.; Tanaka, M.; Moro-oka, Y. *J. Am. Chem. Soc.* **1993**, *115*, 5496.

² Tanase, T.; Nitta, S.; Yano, S. et alli. *Inorg. Chem.* **1993**, 31, 1058.

³ Batista, Suzana C.; Scarabelot, Janiele F.; Pereira, Taiane R.; XIV Encontro de Química da Região Sul. 2006, QI44.