Síntese e caracterização de compostos de coordenação de paládio(II) contendo ligantes lineares nitrogenados e oxalato.

Rafael L. Fernandes (PG)*, Patrícia B. da Silva (PG), Talita P. da C. Neves (PG), Adelino V. G. Netto (PQ), Antonio E. Mauro (PQ) e Regina C. G. Frem (PQ).

Departamento de Química Geral e Inorgânica – Instituto de Química de Araraquara – UNESP – Araraquara - SP *e-mail: rafaellf@posgrad.iq.unesp.br

Palavras Chave: paládio(II), ligantes nitrogenados, oxalato.

Introdução

Sólidos de coordenação estendidos de estruturas porosas contendo ligantes lineares ditópicos têm atraído enorme interesse pelas suas potenciais armazenamento de aplicações em gases, peneiramento molecular, sistemas catalíticos, entre outras¹. As dimensões desses poros podem ser controladas pela escolha adequada do ligante ditópico², tais como 4,4'-bipiridina (bipy), trans-1,2bis(4-piridil)etileno (bpe) e pirazina (pz). Entretanto, investigações nesta área envolvendo building blocks quadrado-planares (ex. Pd⁺²) ainda são escassas na literatura. Novas arquiteturas supramoleculares portadoras de cavidades ou canais podem ser planejadas e auto-montadas empregando o oxalato como ligante cis-protetor frente ao íon Pd⁺² e os ligantes lineares bipy, bpe e pz. Este trabalho apresenta síntese caracterização а е а espectroscópica das espécies auto-montadas $[Pd_2(ox)_2(bipy)]_n(1), [Pd_2(ox)_2(bpe)]_n(2) e [Pd_2(ox)_2(pz)]_n$ **(3)**.

Resultados e Discussão

Os compostos foram preparados em MeOH e água pela reação entre $[PdCl_2(MeCN)_2]$, oxalato de sódio e os ligantes nitrogenados na razão molar 1:1:2. Os dados de análise elementar de **1-3** (Tabela 1) concordam com as fórmulas propostas.

Tabela 1. Análise elementar dos compostos 1-3.

	%C		%N		%H	
Composto	Ο.	C.	Ο.	C.	О.	C.
[Pd ₂ (ox) ₂ (bipy)] _n	30,8	30,3	5,1	4,9	1,5	2,2
[Pd ₂ (ox) ₂ (bpe)] _n	33,6	33,0	4,9	4,8	1,8	2,1
$[Pd_2(ox)_2(pz)]_n$	20,5	20,6	6,0	5,9	0,9	1,5

O. = obtido, C. = calculado

Os compostos de **1-3** apresentaram em seus respectivos espectros no IV as bandas características do grupo oxalato coordenado no modo quelante bidentado em 1630-1650 cm $^{-1}$ ($v_{as}(COO^{-})$) e 1315-1325 cm $^{-1}$ ($v_{s}(COO^{-})$).

No espectro no IV do composto **1** observaram-se bandas associadas aos modos vibracionais da 4,4'-bipy coordenada em 3043, 1606 e 1411 cm⁻¹

atribuídas aos modos vibracionais $\nu(\text{CH}),\ \nu(\text{CC})$ e $\nu(\text{CN})$ do anel, respectivamente.

No espectro no infravermelho do composto $\bf 2$ verifica-se a coordenação do ligante bpe devido à presença das absorções em 3045, 1605 e 1431 cm⁻¹ associadas aos modos vibracionais $\nu(CH)$, $\nu(CC)$ e $\nu(CN)$ do anel, respectivamente.

A coordenação da pirazina no composto $\bf 3$ é evidenciada pelo aparecimento de suas bandas típicas em 3038 e 1421 cm $^{-1}$ atribuídas, respectivamente, aos modos vibracionais $\nu(CH)$ e $\nu(CN)$ do anel.

Os espectros de reflectância difusa na região do UV-Vis dos compostos **1-3** mostram as bandas intensas referentes às transições n $\rightarrow \pi^*$ (COO) e $\pi \rightarrow \pi^*$ (C=C) dos ligantes na região de 230-320 nm e as excitações LMCT centradas em torno de 393 nm. De acordo com os dados obtidos, uma das possíveis estruturas dos compostos **1-3** no estado sólido está ilustrada pela Figura 1.

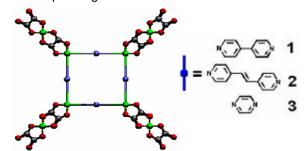


Figura 1. Estrutura proposta dos compostos 1-3.

Conclusões

A síntese e caracterização espectroscópica dos compostos 1-3 foram apresentadas neste trabalho. Nota-se que os ligantes nitrogenados L, apesar de modificar a distância entre os centros metálicos, não influenciaram a composição [Pd₂(ox)₂L]_n das espécies resultantes.

Agradecimentos

Os autores agradecem a CAPES, CNPq e FAPESP.

¹ Balzani, V.; Scandola, F. Em Photochemical and Photophysical Devices; Reinhoudt, D.N., ed.; Elsevier Science Inc.: New York, vol. 10, p. 687, 1996.

Sociedade Brasileira de Química (SBQ)

² Lu, J.; Paliwala, T.; Lim, S. C.; Yu, C.; Niu, T.; Jacobson, A. J.; Inorganic Chemistry, v.36, p.923-929, 1997.