Efeito da corrente e do tempo de eletrodeposição e do eletrólito nas curvas de polarização dos óxidos de \(\mathbb{G} - \text{PbO}_2 \).

Élen Cristina Gonçalves Rufino (IC)^{*1} e Luiz Antonio de Faria (PQ)¹ elencris85@yahoo.com.br

Universidade Federal de Uberlândia – Instituto de Química – Av. João Naves de Ávila 2121 – Uberlândia MG, CEP 38408-100.

Palavras Chave: eletrodos de ß-PbO2, caracterização, RFO, curvas de Tafel.

Introdução

Recentemente tem crescido o interesse em baratear o custo da produção de ozônio, valendo-se avanços alcançados ultimamente eletroquímica, e de empregá-lo na degradação de orgânicos resistentes (agrotóxicos, corantes têxteis) e de efluentes industriais e urbanos. A performance da reação de formação de ozônio (RFO) é dependente de fatores tais como: temperatura, natureza do material do eletrodo, composição do eletrólito de suporte, área real do eletrodo, etc [1, 2]. Frente ao exposto, este trabalho tem como objetivo investigar, a influência do tempo de deposição, da corrente de eletrodeposição e da composição do eletrólito suporte, nas propriedades cinéticas dos eletrodos de \(\mathbb{G} \text{PbO}_2 \), buscando selecionar melhores condições para a RFO.

Resultados e Discussão

A deposição do óxido ß-PbO2 foi efetuada em dois valores de corrente anódica constante (10 e 20mA) usando diferentes tempos de deposição (20 e 60 min), sobre ambas as faces de um suporte de titânio, de área geométrica de 2cm⁻² sobre a superfície de uma camada intermediária de platina. Desta forma, obteve-se quatro eletrodos diferentes voltamogramas cíclicos foram característicos do comportamento do ß-PbO₂. Uma menor corrente e um menor tempo de deposição (eletrodo I) resultaram em um óxido com maior número de sítios ativos. Com o aumento da corrente e do tempo de deposição (eletrodo IV) ocorreu uma diminuição da área eletroquimicamente ativa. Os resultados do fator de morfologia, obtidos através das capacidades interna e total, C_I/C_T foram confirmados pelo estudo de Microscopia Eletrônica de Varredura e mostram que o aumento da corrente empregada na eletrodeposição resulta na elevação de C_T (grau de rugosidade). Observou-se também que baixas densidades de corrente aliadas a um baixo tempo de deposição

resultam em filmes com menor fator de morfologia (f.)

As curvas de polarização, E vs. j, foram registradas a uma velocidade de 1mV s⁻¹, do valor do potencial do eletrodo correspondente ao potencial em aberto ao potencial do correspondente a uma corrente de 0,1A cm⁻². Os resultados deste estudo são mostrados na Tabela 1(final do documento). A Tabela 1 mostra que tanto os valores de b₁ como os de b₂ foram maiores para o eletrólito suporte H₂SO₄ 1,0mol dm⁻³. A Tabela 1 também mostra que a adição de KPF6 e NaF em ambos os eletrólitos suporte (H2SO4 1,0 e 3,0 mol dm⁻³) causaram um aumento nos valores de b₁ e b₂. Isto se deve ao fato de os compostos fluorados alterarem a dupla camada elétrica na superfície do óxido. Pode-se observar também que os eletrodos II e IV apresentaram maiores valores de b, e b, quando comparados aos eletrodos I e III (menores correntes de eletrodeposição aplicadas durante o preparo dos eletrodos). Estes resultados mostram que as condições de eletrodeposição dos óxidos, o eletrólito suporte usado e a adição de compostos fluorados ao eletrólito suporte, influenciam a RFO, já que um aumento da corrente (maiores coeficientes de Tafel) causa também um aumento do potencial.

Conclusões

O uso do eletrólito suporte H₂SO₄ 1,0mol dm⁻³, a adição de compostos fluorados ao eletrólito suporte e aplicação de correntes mais altas na eletrodeposição do óxido de β-PbO₂ mostraram ser as melhores condições para uma maior eficiência da RFO em desfavorecimeto da RDO.

Agradecimentos

E.C.G. Rufino agradece a Bolsa de IC/PIBIC/CNPq. L.A. De Faria agradece a Fapemig e ao CNPq.

Tabela 1. Dependência do coeficiente de Tafel com a forma de preparação dos eletrodos e com diferentes eletrólitos.

Sictionico.												
Eletrodo	Solução 1M						Solução 3M					
	-		KPF ₆		NaF		-		KPF ₆		NaF	
	b ₁	b ₂	b ₁	b ₂	b ₁	b_2	b ₁	b ₂	b ₁	b ₂	b ₁	b ₂
1 10 mA cm ⁻² /t=20min	124		162	86	165	80	115		150		148	81
2 20 mA cm ⁻² /t=20min	209	101	274	115	262	126	166	98	198	93	177	87
3 10 mA cm ⁻² /t=60min	183	90	199	103	197	107	147	88	170	88	166	85
4 20 mA cm ⁻² /t=60min	277	125	314	111	322	102	167	119	254	102	213	99

¹ Foller, P.C.; Tobias, W.J., *Electrochem. Soc.* **1982**, 129, 506.

² Kotz, R.; Stucki, S., J. Electroanal. Chem., **1987**. 228, 407.

Sociedade Brasileira de Química (SBQ)