Estudo eletroquímico e de EPR do complexo Perclorato de {*N,N*'-[bis-(2-hidroxi-3-formil-5-metilbenzil)(dimetil)]-etilenodiamina}- cobre(II) como modelo para metaloenzimas de cobre(II)

Tiago P. de Camargo (IC); Rosely A. Peralta (PQ)*; Ademir Neves(PQ)

rosely@qmc.ufsc.br

Universidade Federal de Santa Catarina, Departamento de Química, Laboratório de Bioinorgânica e Cristalografia, Campus Universitário, Trindade, Florianópolis – SC, CEP 88040-900

Palavras Chave: Complexo de cobre(II), metaloenzimas, EPR

Introdução

Metais de transição fazem parte do sítio ativo de diversas metaloenzimas que desempenham papéis fundamentais em sistemas vivos. Muito do que hoje se conhece sobre metaloenzimas, deve-se à caracterização e estudos de reatividade de complexos modelos. É de grande importância a escolha de ligantes que possam reproduzir no modelo sintético as propriedades físico-químicas, espectroscópicas e de reatividade da enzima alvo.

O complexo Perclorato de $\{N,N'^2[\text{bis-}(2-\text{hidroxi-3-formil-5-metilbenzil})(\text{dimetil})]$ -etilenodiamina}- cobre(II) possui um ligante do tipo N_2O_4 -doador (inspirado no Salen), sendo que apenas átomos de oxigênio ligados ao íon cobre(II), fato até então não descrita na literatura.

Resultados e Discussão

A síntese do complexo está descrita conforme a literatura.² O complexo apresenta estrutura piramidal quadrada com 4 íons perclorato para 2 moléculas de complexo, sugerindo que os fenóis estejam protonados (Figura 1).

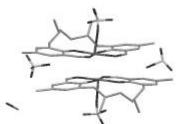
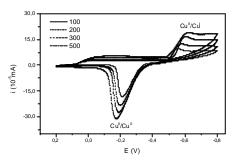



Figura 1. Estrutura de 1

As propriedades redox do complexo foram estudadas aravés da técnica de voltametria cíclica (**Figura 2**). Os voltamogramas cíclicos apresentam uma onda irreversível em E_{PC} = -0,534 V vs. ENH. A primeira onda (catódica) de cada composto corresponde ao processo irreversível de transferência de um elétron, segundo a equação:

Cu(H₂fmbme)²⁺ + 1e⁻? Cu(H₂fmbme)⁺

A onda anódica que aparece em -0,210 V vs. ENH pode ser atribuída à oxidação de depósito de Cu⁰ formado sobre a superfície do eletrodo ou a um processo de oxidação do tipo Cu¹[L] / Cu¹¹[L] com reação química acoplada, dada a sua irreversibilidade.

Figura 2. Voltamograma cíclico do complexo, em velocidades de 100, 200, 300, 500 mV.s⁻¹ em CH₃CN, TBAPF₆ (0,1 mol.L⁻¹). Eletrodo de trabalho – Pt; Eletrodo referência – Ag/Ag⁺; Eletrodo auxiliar – Fio de Platina, usando o par Fc⁺/Fc como padrão interno.

O espectro de EPR do complexo em solução acetonitrila a temperatura ambiente mostrou-se axial $(g_{//} > g_{\perp} > 2)$ com valores de $g_{/} = 2,141$, $g_{\perp} = 2,064$ e $A_{//} = 118$ G. Estes parâmetros indicam geometrias mais próximas a geometria de pirâmide de base quadrada. Há a ocorrência de um sinal em g = 4,501 $(?M_{\rm S} = \pm 2)$ atribuído a uma interação entre os centros de Cu(II), o que concorda com a estrutura de raios X devido a pequena distância entre os centros metálicos no complexo 1 (3,437 Å).

Conclusões

O complexo possui uma estrutura dímera com geometria piramidal quadrada, demonstrando ser um promissor modelo estrutural para o sítio ativo de oxidases de cobre(II).

Agradecimentos

CNPq, DQ-UFSC

¹ LIPPARD, S. J. and BERG, J. M. **Principles of bioinorganic chemistry**, Mill Valley: University Science Books, p. 1-20, 1994.

Sociedade Brasileira de Química (SBQ)

² CAMARGO, T. P.; Trabalho de conclusão de curso, Universidade Federal de Santa Catarina, 2006.