Caracterização dos Estados de Oxidação do Manganês em Turmalinas da Mina do Cruzeiro, Minas Gerais, Brasil.

Warde Antonieta F. Zang^{*} (PQ), Joachim W. Zang (PQ).

Área de Química do CEFET-GOIÁS, Rua 75, 46, Centro 74055-110, Goiânia-GO. E-mail : warde @quimica-industrial.com

Palavras Chave: Espectros Polarizados de UV-vis, Aplicação da Teoria do Campo Cristalino.

Introdução

Turmalina é representada pela fórmula cristaloquímica geral: ${}^{[9]}X^{[6]}Y_3{}^{[6]}Z_6({}^{[3]}BO_3)_3[{}^{[4]}Si_6O_{18}](O,OH)_3(OH,F),$ onde:

 $\begin{array}{l} \textbf{X} = Na^{+}, \ Ca^{2+}, \ [\], \ K^{+}, \ Bi^{+}; \ \textbf{Y} = Al^{3+}, \ Li^{+}, \ Mg^{2+}, \ Fe^{2+/3+}, \\ Mn^{2+/3+}, \ Cr^{3+}, \ V^{3+}, \ Cu^{2+}; \ \textbf{Z} = Al^{3+}, \ Fe^{3+}, \ Cr^{3+}, \ V^{3+}, \ Mg^{2+}, \\ Fe^{2+}, \ Ti^{4+}; \ \textbf{B} = B^{3+} \ e \ \textbf{Si} = Si^{4+}, \ Al^{3+}, \ B^{3+}. \end{array}$

Tsilaisita é uma espécie de composição teórica: (Na,Ca) **Mn**₃ **Al**₆ (BO₃)₃ [Si₆O₁₈] (OH)₂(OH,O)(OH,F), com Mn localizado no sítio octaédrico Y da estrutura¹. Estudos da ocupação máxima do sítio Y por Mn e seu estado de oxidação têm sido feitos. ^{1,2} lons de metais de transição (MT) com bandas de absorção permitidas no UV-Vis (Fe²⁺, Cr³⁺, Mn³⁺...) podem interferir na caracterização de Mn²⁺ (d⁵). Amostras da Mina Cruzeiro, MG, de teor em massa de MnO=1,60% e relativa baixa concentração em FeO=0,08% foram usadas neste trabalho.

Resultados e Discussão

A composição química da amostra (86MG) foi determinada na Microsonda Eletrônica (EMP), CAMECA-CAMEBAX (15 kV, 10 nA). A quantidade de Li na fórmula foi estimada a partir da população de cátions na posição Y. Quantidades de íons OH⁻ foram calculadas estequiometricamente.

Num polariscópio com conoscópio adaptado, marca SCHNEIDER, Alemanha, os cristais foram orientados para cortes paralelos ao eixo c do cristal. A espessura dos cortes foi de 0,9 mm.

Os espectros foram medidos com um Espectrofotômetro Leitz MPV-5P, composto por um microscópio com ótica restrita a medidas na região de 12,500-27,000 cm⁻¹. Na calibração dos espectros uma amostra de turmalina incolor foi usada.

Resultados EMP da Amostra 86MG, cinza azul (Concentração % em massa): $SiO_2=36,71$, $B_2O_3=10,90$, $AI_2O_3=39,22$, $TiO_2=0,00$, $V_2O_3=0,00$, $Cr_2O_3=0,00$, MgO=0,00, $K_2O=0,00$, FeO=0,08, MnO=1,60, CaO=2,61, Na_2O=1,25, Li_2O=2,70, F=1,25, H_2O=3,10, O-F=0,53 Soma: 98,88.

Espectros de absorção polarizados mostram a presença dos íons Mn²⁺, Fe²⁺ e Fe³⁺ na estrutura.

30ª Reunião Anual da Sociedade Brasileira de Química

Na Fig. 1, uma banda a 13.600 cm⁻¹ é atribuída à transição permitida $^5T_{2g}$? 5E_g do íon Fe²+ em um complexo octaédrico (sítioY).³

Figura 1. Espectro UV-Vis absorção polarizado E- c (86MG), cor azul-cinza, espessura 0,9mm.

O diagrama de Tanabe-Sugano para d⁶ prevê estados excitados quartetos ou dubletos, sendo esperado para Mn²⁺ transições proibidas por spin.³ Transições largas e pouco intensas relacionadas ao Mn²⁺ (Y), uma a v₁=17.414 cm⁻¹, atribuída a ⁶A_{1g} ? ⁴T_{1g} e outra a v₂=22.455 cm⁻¹, atribuída à transição ⁶A_{1g} ? ⁴T_{2g}. Uma banda muito fina com máximo de absorbância em v₃=24.088 cm⁻¹ mostra a transição ⁶A_{1g} ? ⁴A_{1g}, ⁴T_{Eg}, sendo esta relacionada à terceira banda pouco intensa do Mn²⁺. O Fe³⁺ é observado a cerca de 20.000 e 21.600 cm⁻¹ (bandas muito largas e pouco intensas).³

Conclusões

Amostras da Mina Cruzeiro, MG, com baixo teor em FeO e ausência de outros MT possibilitaram a caracterização por UV-Vis do Mn²⁺ na estrutura. Isso contribui para o estudo de turmalinas, desde que a observação de Mn²⁺, associada às transições pouco intensas no UV-Vis é normalmente dificultada por transições permitidas de outros íons de MT, inclusive o íon Mn³⁺. A presença de Mn²⁺ em turmalina tem sido ainda questionada. ^{1,2,3}

Agradecimentos

Agradecemos ao CNPq e ao Instituto de Geociências da Universidade de Mainz, Alemanha.

Sociedade Brasileira de Química (SBQ)

 ¹ ZANG, J. W., Zur Kristallchemie der Turmaline, Tese de doutorado, Johannes Gutenberg-Universität Mainz, 1994.
² HARALAMPIEV, A. G., The mineralogy and crystal chemistry of mangniferous tormalines, Tese de doutorado, University of Cincinnati, EUA, 1997.

³ BURNS, G. R. Mineralogical applications of crystal field theory. 2.ed. Cambridge: University press, 1993. 5v.