Estudo cinético da reação da hidroxilamina e N-metilhidroxilamina com o anidrido 1,8-naftálico.

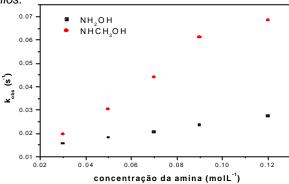
Andreia Maria Faedo¹ (IC)*, Juan Ricardo¹ (PG), José Carlos Gesser¹ (PQ) .

1-Departamento de Química -Universidade Federal de Santa Catarina.

Palavras Chave: Imidas, amidas, transacilação, alfa nucleófilos.

Introdução

Reações de transacilação têm sido objeto de intensa pesquisa devido a sua grande importância em sistemas bioquímicos. Estas aparecem nas reações de derivados funcionais de ácidos carboxílicos e no mecanismo de ação de enzimas hidrolíticas em sistemas biológicos. O entendimento da reatividade dos grupos nucleófugos e nucleófilos participantes da reação torna-se altamente importante. Um exemplo é a pesquisa de nucleófilos estáveis na detoxificação química, chamados nucleófilos detentores do efeito alfa¹. Anidridos reagem eficientemente com aminas primárias e secundárias, fornecendo amidas, via reação de transacilação, estas por sua vez fornecem imidas pela perda de uma molécula de água. A reação de transacilação do anidrido 1,8- naftálico com a hidroxilamina e a N-metilhidroxilamina, ambos nucleófilos detentores do efeito alfa, fornece a Nhidroxiftalimida 0 ácido naftalâmico. е respectivamente. O estudo cinético dessas reações fornece parâmetros que podem ser utilizados no entendimento da reatividade dos nucleófilos além de fornecer produtos de interesse bioquímico.


Resultados e Discussão

A cinética da reação de transacilação entre o anidrido 1,8-naftálico com a hidroxilamina e com N metilhidroxilamina, foi estudada a diferentes concentrações dos nucleófilos, em pH 7,0 e numa mistura acetonitrila/água (0,66% v/v), esquema 1.

$$A: R = CH_3$$

Esquema 1. Reação de transacilação

Determinaram-se as constantes de velocidade de pseudo-primeira ordem através de espectroscopia de UV-Vis acompanhando-se o aparecimento da imida a 298nm e do ácido naftalâmico a 340nm. Através dos valores de k_{obs} determinados nas cinéticas obteve-se o gráfico da figura 1.

Figura 1 . Gráfico de k_{obs} versus a concentração da amina para T= 25°C

O coeficiente angular de cada gráfico fornece constantes de velocidade de segunda ordem de 1,31 $10^{-1} \text{ M}^{-1}.\text{s}^{-1}$ e 6,90 $10^{-1} \text{ M}^{-1}.\text{s}^{-1}$ para a imida e para o ácido naftalâmico respectivamente. Os valores das constantes de velocidade determinadas a diferentes temperaturas foram usados para determinar os $\frac{1}{1000} \frac{1}{1000} \frac{1}{10$

	(Kcal mol ⁻¹)	(Kcal mol ⁻¹)	(u.e.)	(Kcal mol ⁻¹)
Imida	10,65	10,06	-29,03	18,72
Ácido Naftalâmico	4,25	3,66	-47,20	17,73

parâmetros de ativação, tabela1.

Tabela1. Parâmetros de ativação

Conclusões

Os valores das constantes de velocidade obtidos, comparadas a valores para reações do anidrido 1,8-naftálico com outras aminas primárias que apresentam valores de constante na ordem de $10^{-3} \, \text{M}^{-1}$.s-1 (piperidina) demonstram que a reação do anidrido com a hidroxilamina e seu derivado é pelo menos 100 vezes mais rápida, um indicativo da maior nucleofilicidade devido o efeito α .

Agradecimentos

^{*}deia_faedo@yahoo.com.br

Sociedade Brasileira de Química (SBQ)

LacBio/UFSC

1- Gesser, Jose C.; Pliego, Josefreo R.; Mazera, Deise J. Phys. Org. Chem. 07-0018, submetido.