Encapsulamento da *trans*-desidrocrotonina em um novo sistema microemulsionado isento de cotensoativo

Fabiano E. S. Gomes (PG)^{1*}, Maria Aparecida M. Maciel (PQ)¹, Tereza N. Castro Dantas (PQ)¹ *e-mail: feibi_natal@yahoo.com.br

Palavras Chave: Croton cajucara, trans-desidrocrotonina, encapsulamento de fármacos, microemulsão.

Introdução

Microemulsões (ME) são sistemas coloidais termodinamicamente opticamente estáveis е isotrópicos constituídos de tensoativo, água, fase orgânica e se necessário, um cotensoativo. Nanoformulações do tipo ME vêm sendo utilizadas como sistemas de liberação de fármacos contribuindo para a biodisponibilização do fármaco com diminuição de efeitos adversos^{1,2}. No entanto, o uso de álcoois de cadeia média (cotensoativos) em ME limita o uso farmacológico destes sistemas. Neste trabalho reportamos a obtenção e a caracterização físicoquímica de um sistema microemulsionado isento de cotensoativo, bem como o encapsulamento do clerodano bioativo trans-desidrocrotonina³ (DCTN, isolado de Croton cajucara Benth) nesta formulação.

Resultados e Discussão

O novo sistema microemulsionado (ME-D) foi obtido a partir da mistura dos tensoativos Tween 80:Span 20 (3:1), miristato de isopropila (IPM; fase orgânica) e água bidestilada. A eficácia deste sistema foi comparada com resultados previamente obtidos⁴ para os sistemas ME-B e ME-C, que possuem na sua formulação, etanol como cotensoativo (Tabela 1). Para cada sistema obtido (Tabela 2) foram determinados o índice de refração (refratômetro Abée) e a viscosidade (viscosímetro capilar Canon-Fenske #200).

Tabela 1. Composição das microemusIsões (ME) (% em massa)

·	ME-B	ME-C	ME-D
Tween 80	22,5%	18,75%	22,5%
Span 20	7,5%	6,25%	7,5%
Etanol	30,0%	25,0%	_
IPM	20,0%	45,0%	65,0%
Agua	20,0%	5,0%	5,0%

Tabela 2. Dados de viscosidade e índice de refração dos sistemas microemulsionados testados.

Sistema	Viscosidade (cp)*	Índice de Refração
ME-B	$26,22 \pm 0,02$	1,4068
ME-C	15,02 ± 0,05	1,4178
ME-D	113,70 ± 0,14	1,4404

^{*} Os valores correspondem à média de 6 experimentos

A solubilidade da DCTN nas microemulsões testadas, bem como nos seus componentes isoladamente (Tabela 3), foi determinada por UV após 24 horas de agitação (28 \pm 1°C), centrifugação (2800 rpm, 10 min) e diluição em metanol tanto para a amostra quanto para o branco.

Tabela 3. Solubilidade da DCTN em sistemas microemulsionados e em seus componentes

Veículo	Solubilidade (mg/mL)*
ME-B	12,024 ± 0,538
ME-C	25,045 ± 0,141
ME-D	$10,262 \pm 0,423$
Tween 80	$4,266 \pm 0,304$
IPM	$4,176 \pm 0,035$
Agua	$5,03 \times 10^{-2} \pm 0,0048$

* Os valores correspondem à média de 3 experimentos

A ausência de cotensoativo no sistema ME-D produziu aumento da viscosidade desta formulação devido à diminuição da flexibilidade da camada de tensoativo. No entanto, o efeito sinérgico entre um tensoativo hidrofílico (Tween 80) e um lipofílico (Span 20) possibilitou a estabilidade desta camada, e consequentemente, a obtenção de uma formulação isenta de cotensoativo.

Conclusões

A ausência de etanol e a alta viscosidade da ME-D provocou redução da solubilidade da DCTN em comparação aos outros sistemas testados. No entanto, apesar da alta viscosidade da formulação ME-D, foi possível encapsular o clerodano DCTN em concentração significativa. Os resultados obtidos mostram que a obtenção da nanoformulação biológica ME-D pode ser bastante útil na administração transdérmica de fármacos em geral, com ganhos significativos na diminuição de riscos toxicológicos, já que não possui na sua formulação o cotensoativo etanol.

Agradecimentos

Ao CNPq e a CAPES pelo suporte financeiro.

¹Departamento de Quimica, UFRN – Natal/RN

¹ Oliveira, A. G.; Scarpa, M. V.; Correa, M. A.; Cera, L. F. R.; Formariz, T. P. *Quim. Nova* **2004**, *27*, 131.

² Lawrence, M. J.; Rees, G. D. Adv. Drug Deliv. Rev. 2000, 45, 89.

³ Maciel, M. A. M. et al. Quim. Nova **2002**, 25, 429.

Sociedade Brasileira de Química (SBQ)

⁴ Gomes, F. E. S. *et al.*, Obtenção de microemulsões contendo o produto natural bioativo *trans*-desidrocrotonina, *29^a. Reunião Anual da SBQ*, Águas de Lindóia, SP, 2006.