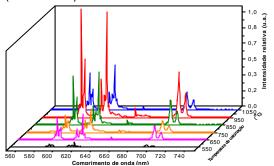
Método Pechini modificado para a obtenção de nanopartículas de fosfatos de Terras Raras com propriedades luminescentes

Paulo Cesar de Sousa Filho* (IC) e Osvaldo Antonio Serra (PQ) (*pcsfilho@aluno.ffclrp.usp.br)

Departamento de Química – Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto – Universidade de São Paulo Av. dos Bandeirantes, 3900 – CEP:14040-901 – Ribeirão Preto, SP.

Palavras Chave: Luminóforos, Terras Raras, Fosfatos, Nanopartículas, Método Pechini.


Introdução

A obtenção de luminóforos torna-se, a cada dia, um tema cada vez mais explorado graças às amplas aplicações destes materiais. Devido a várias de suas propriedades físicas e químicas, alguns fosfatos de Terras Raras são potenciais luminóforos inorgânicos. Neste trabalho, utilizou-se o método Pechini modificado para a obtenção de tais materiais. O princípio da rota sintética desenvolvida consiste na capacidade do ânion tripolifosfato (P₃O₁₀⁵-) em atuar como agente complexante e como precursor de íons ortofosfato. Dessa forma, o aquecimento de uma solução aquosa contendo Y3+, Eu3+, P3O105-, ácido cítrico e etilenoglicol leva à formação de uma resina polimérica. A calcinação dessa resina em diferentes temperaturas resulta em um ortofosfato com propriedades luminescentes.

Resultados e Discussão

O luminóforo YPO₄:Eu³⁺ sintetizado mostra uma boa incorporação dos íons ativadores na matriz de YPO₄, sem apresentar polifosfatos como impurezas, como revelam as análises de DRX e infravermelho. Observaram-se, através de microscopia eletrônica de varredura, partículas com morfologia esférica e tamanhos médios entre 70 e 120 nm.

Em termos de luminescência, o material calcinado a 950°C apresenta a maior intensidade de emissão sob excitação em 395 nm. A intensidade de excitação em 250 nm varia pouco para todos os compostos, indicando que não há deslocamento da banda de transferência de carga. Para as calcinações acima de 650°C, a excitação em 395 nm é de 1,1 a 3,7 vezes maior que a excitação na banda de transferência de carga (em 250 nm).

Figura 1. Espectros de emissão (a 25°C) sob excitação em 395 nm.

As coordenadas tricromáticas mostram que os compostos preparados possuem alta pureza de cor (x > 0,65), apropriada para aplicações como luminóforos vermelhos. Obtiveram-se eficiências quânticas entre 38 e 59%, sendo o material preparado a 650°C o mais eficiente.

Tabela 1. Temperatura de calcinação, tamanho de cristalito calculado (eg. de Scherrer), intensidade relativa de emissão (5D_0 ? 7F_2), eficiência quântica, tempo de vida e coordenadas tricromáticas (obtidas com o programa *Spectra Lux Software v.2.0 – Ponto Quântico Nanodispositivos / RENAMI, 2003, P.A. Santa-Cruz, F.S. Teles*).

Temp. (°C)	€ _{hkl} (nm)	l (u.a.)	Ф (%)	τ (ms)	х	у
550	41	0,05	40,5	2,38	0,655	0,344
650	47	0,25	58,5	3,42	0,664	0,334
750	38	0,22	44,9	2,51	0,661	0,338
850	53	0,50	49,1	3,25	0,665	0,333
950	57	1,0	50,7	3,47	0,666	0,333
1050	57	0,42	37,7	2,07	0,665	0,334

Conclusões

O luminóforo vermelho Y_{0,96}Eu_{0,04}PO₄ foi sintetizado pelo método Pechini, obtendo-se nanopartículas com morfologia esférica. A calcinação em diferentes temperaturas revelou que a maior intensidade de emissão ocorre em 950°C, a maior eficiência quântica em 650°C e o início da degradação da fase de fosfatos em 1050°C. Maiores temperaturas de calcinação resultaram em partículas maiores. Uma diminuição da quantidade de íons Eu³+ e a avaliação da sua influência na fotoluminescência do material deverão ser alvos de possíveis estudos futuros.

Agradecimentos

CAPES, CNPq e FAPESP.

¹ Tuan, D.C; Olazcuaga, R.; Guillen, F.; Garcia A.; Moine, B.; Fouassier, C.; *J. Phys. IV France* **2005**, 123;. 259.

Sociedade Brasileira de Química (SBQ)

² Buissette, V.; Moreau, M.; Gacoin, T.; Boilot, J.-P.; Chane-Ching, J.-Y.; Le Mercier, T.; *Chem. Mater.*; **2004**, 16, 3767.

³ de Mello Donegá, C.; Alves Júnior, S.; de Sá, G.F.; *J. Alloys and Comp.*, **1997**, 250; 422.