Estudo da reação de Heck em monoglima e diglima

Aline Alves Bello da Silva¹ (IC), Andréa Luzia F. de Souza¹ (PQ) e O. A. C. Antunes¹ (PQ)*

*e-mail: Octavio@.ufrj.br

¹ Instituto de Química, Universidade Federal do Rio de Janeiro - Ilha do Fundão - Rio de Janeiro, 21945-970 - RJ

2 Nortec Química, rua dezessete, 200, Distrito Industrial, Xerém, Duque de Caxias, 25250-000 - RJ

Palavras Chave: Heck, paládio, monoglima, diglima, bmimCl

Introdução

Reações de Heck ocupam um lugar especial entre os tipos de reações catalisadas por paládio¹. Essas reações envolvem iodetos e brometos de arila e é promovida por Pd(II) ou Pd(0), usualmente em temperaturas elevadas.

Nos últimos dez anos, líquidos iônicos tem sido uma grande atração como possível substituto de solventes convencionais para reações orgânicas e catalíticas, e já foram usados como solventes em reações de Heck de olefinas monosubstituídas com haletos de arila, principalmente iodetos, pra aumentar a velocidade e o rendimento reacional².

Poucas arilações de Heck de olefinas dissubstituidas foram relatadas. Tais reações de Heck de haletos de arila com meta-acrilatos levam á produtos medicinalmente interessantes³.

O nosso objetivo é obter olefinas substituídas através da reação de Heck entre olefinas e haletos de arila ativados e desativados em monoglima e diglima, utilizando PPh₃ e [Bmim][CI], que é um líquido iônico, como ligantes.

Resultados e Discussão

A metodologia foi testada usando como padrão iodobenzeno e acrilato de metila, foram utilizadas duas fontes de paládio (Pd(OAc)₂ e Pd₃(dba)₂), dois ligantes diferentes (PPh₃ e [Bmim][Cl]) acetato de potássio como base, Brometo de tetrabutilamônio (TBAB) como transferidor de fase e dois solventes diferentes (monoglima e diglima) (Esquema 1). Todas as reações ficaram em refluxo por 18 horas. Os resultados estão descritos na tabela 1.

Esquema 1. Reação de Heck com iodobenzeno e acrilato de metila

Tabela 1. Reação de Heck com iodobenzeno e acrilato de metila

	Solvente	Pd	Ligante	Conv. %
1	Monoglima	Pd(Oac) ₂	PPh ₃	100
2	Monoglima	Pd ₃ (dba) ₂	PPh ₃	98
3	Monoglima	Pd(Oac) ₂	[Bmim][CI]	100
4	Monoglima	Pd ₃ (dba) ₂	[Bmim][CI]	32
5	Diglima	Pd(Oac) ₂	PPh ₃	27
6	Diglima	Pd ₃ (dba) ₂	PPh ₃	32
7	Diglima	Pd(Oac) ₂	[Bmim][CI]	99
8	Diglima	Pd ₃ (dba) ₂	[Bmim][CI]	74

De acordo com os resultados, verificamos que as reações em monoglima, entradas 1 e 3, foram convertidas totalmente. Devido ao alto grau de toxicidade da fosfina, achamos que o [Bmim][Cl] é um ligante melhor por ser não-tóxico. Para comprovar o método, aplicamos essas condições em outras olefinas e haletos ativados e desativados. Os resultados estão descritos na tabela 2.

Tabela 2. Reação de Heck utilizando monoglima, IBmiml[CI], KOAc, 5% TBAB e 5% Pd(OAc)₂

ווטו	[Billing[Ci], NOAC, 3% TBAB e 3% Tu(OAC) ₂					
	Haleto	Olefina	Conv. %			
1	4-nitro-iodobenzeno	Acrilato de metila	100			
2	4-iodoanisol	Acrilato de metila	93			
3	4-bromo- acetofenona	Acrilato de metila	92			
4	lodo benzeno	Acrilato de metila	96			
5	4-nitro-iodobenzeno	Acrilonitrila	94			
6	4-iodoanisol	Acrillonitrila	30			

Conclusões

Em resumo, pudemos comprovar que o meio reacional envolvendo monoglima, [Bmim][CI], KOAc, 5% TBAB e 5% Pd(OAc)₂ é um excelente método para obtenção de olefinas substituídas.

Agradecimentos

CNPq, CAPES e FAPERJ pelo suporte financeiro.

¹ Heck, R. F.; J. Am. Chem. Soc. 1968, 90, 5518.

Sociedade Brasileira de Química (SBQ)

Gordon, C. M.; *Appl. Catal. A.*. **2002**, *182-183*, 419.
Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; McComarc, P. B.; Seddon, K. R.; *Org. Letters* **1999**, *1*, 997.