Utilização de Métodos Semi-empíricos no Estudo de Materiais Biomiméticos.

Paula Homem-de-Mello*¹ (PQ), Káthia M. Honório² (PQ), Pablo A. Fiorito¹ (PQ), Vani X. Oliveira Junior¹ (PQ), Wendel A. Alves¹ (PQ). *paula.mello@ufabc.edu.br

¹Universidade Federal do ABC, Rua Santa Adélia, 166, CEP: 09210-170, Santo André, SP; ²Escola de Artes, Ciências e Humanidades, Universidade de São Paulo.

Palavras Chave: nostociclamida, materiais biomiméticos, métodos semi-empíricos.

Introdução

Compostos cíclicos envolvendo ligantes peptídicos são formados pelo processo de *self-assembling* de ligantes enantioméricos (D e L) de aminoácidos capazes de formar estruturas com diferentes geometrias (cilíndricas ou cones) e até mesmo nanotubos ou nanofibras.¹ Materiais deste tipo apresentam potencial aplicação para formação de compósitos do tipo *nanocluster* inorgânicos que são modelos versáteis para melhor elucidação das funções enzimáticas ou como matrizes para ativação eletroquímica de enzimas sobre a superfície de eletrodos, além da possibilidade do estudo de transporte de íons através de membranas celulares, liberação controlada de fármacos e fabricação de dispositivos para sensores de íons.

Com intuito de racionalizar a produção de biocatalisadores a base de ligantes macrocíclicos, este trabalho visa verificar se métodos semi-empíricos podem ser utilizados, uma vez que são métodos de baixo custo computacional e permitem o estudo de estruturas relativamente grandes. Para isso, foram realizados cálculos para a molécula de nostociclamida (Figura 1), um composto macrocíclico que ocorre naturalmente e pode ser utilizado na construção de nanoestruturas.^{2,3}

Resultados e Discussão

Foram realizadas otimizações de estrutura da nostociclamida com os métodos AM1 e PM3 (implementados no programa *Gaussian03*) até que a geometria correspondesse a um mínimo, ou seja, que não apresentasse fregüências imaginárias.

A Tabela 1 apresenta parâmetros estruturais experimentais e calculados. As estruturas obtidas são muito semelhantes, mas não são tão planares quanto a molécula na forma cristalina (coluna "Exp."). Entretanto, a "cavidade" (distância entre os átomos de N diametralmente opostos) nos três casos é muito semelhante. Este parâmetro é particularmente importante, pois indica que cátions pequenos (Li⁺, Na⁺ e Mg²+) podem ser coordenados como numa porfirina.² As estruturas menos planares (otimizadas) têm cavidade ligeiramente maior.

O espectro de infra-vermelho (IV) experimental apresenta duas bandas mais intensas: a primeira (1666 cm⁻¹) é bem reproduzida pelos dois métodos, 30^a Reunião Anual da Sociedade Brasileira de Química

entretanto, a outra banda experimental (1543 cm⁻¹) é melhor reproduzida pelo método AM1.

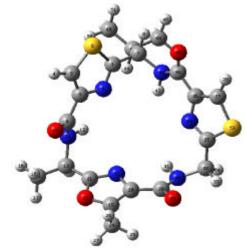


Figura 1. Nostociclamida (geometria PM3).

Tabela 1. Propriedades estruturais e principais bandas de IV para a nostociclamida

	Exp. ¹	AM1**	PM3**
O10-C9-N11-C13	5.9	-27.3	-26.9
C20-C28-N30-C32	178.8	156,96	159,5
C36-C39-N41-C7	174.6	161,3	162,4
"Cavidade" (Å)	5.2-5.6	5.5-5.9	5.5-6.0
IV* (cm ⁻¹)	1666 e	1649 e	1652 e
iv (Giii)	1543	1542	1615

^{*} bandas mais intensas.

Conclusões

Os métodos utilizados reproduzem adequadamente o espectro IV e a cavidade da nostociclamida, fornecendo indícios de como a estrutura deve ser distorcida para acomodar íons metálicos grandes. Cálculos baseados na DFT estão em andamento para comparação e teste de viabilidade para sistemas maiores com o parque computacional disponível.

Agradecimentos

Ao CNPq pelo financiamento.

^{**} fatores de escalonamento: AM1=0,954 e PM3=0,974 (NIST Computational Chemistry Comparison and Benchmark Database, http://srdata.nist.gov/cccbdb).

¹ Barisic, L. et al., Chem. Eur. J. 2006, 12, 4965.

² Todorova, A. K. et al., J. Org. Chem. 1995, 60, 7891.

Sociedade Brasileira de Química (SBQ) ³ Lucke, A. J. et al., J. Mol. Grap. Model. **2003**, 21, 341.