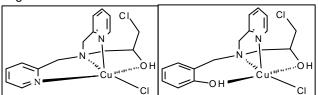
# Estudo da atividade antitumoral in vitro de dois complexos mononucleares de cobre(II) sobre células leucêmicas

Érika S. Bull¹ (PG)\*, Josane A. Lessa¹ (PG), Christiane Fernandes¹ (PQ), Adolfo Horn Jr¹ (PQ), Milton M. Kanashiro² (PQ), Fernanda H. Côrtes² (IC) \*erikabull@gmail.com

<sup>1</sup>LCQUI - UENF - Campos dos Goytacazes/RJ; <sup>2</sup>LBR – UENF - Campos dos Goytacazes/RJ.

Palavras Chave: atividade antitumoral, complexos de cobre(II), apoptose.


### Introdução

A cisplatina, [Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>], é um dos agentes quimioterápicos mais eficientes, empregado no tratamento de vários tipos de tumores.1 Entretanto, assim como a maioria dos agentes quimioterápicos conhecidos, lesa tanto as células cancerosas como as normais, atuando de forma não específica. Outro problema relacionado ao uso prolongado destes agentes quimioterápicos é o surgimento de tumores resistentes.2 Estes fatores têm motivado compostos desenvolvimento de novos investigação da sua atividade citotóxica.

Neste trabalho, apresentamos resultados comparativos da atividade anti-tumoral *in vitro* de dois complexos de cobre(II), frente a cinco linhagens de células leucêmicas.

#### Resultados e Discussão

A síntese e caracterização dos compostos  $[Cu(HPCINOL)CI]CI.CH_3OH^3$  1 e  $[Cu(H_2BPCINOL)CI]CI.H_2O^4$  2 foram previamente descritos. As estruturas de raios X revelaram que estes dois complexos são diferenciados apenas pela substituição de um grupo piridina (complexo 1), por um grupo fenol (complexo 2), como mostrado na Figura 1.



**Figura 1.** Estruturas para os cátions [Cu(HPCINOL)CI]<sup>+</sup> 1 e [Cu(H₂BPCINOL)CI]<sup>+</sup> 2.

Foram realizados estudos citotóxicos dos complexos **1** e **2** frente as seguintes células leucêmicas: THP-1, U-937, HL-60, Jurkat e Molt-4. As células foram incubadas com diferentes concentrações dos compostos **1** e **2**, sendo a indução da morte por apoptose ou necrose observada após 12, 24 e 36 horas. As características morfológicas de morte por apoptose ou necrose foram avaliadas pela fluorescência celular promovida pelos corantes laranja de acridina e brometo de etídio. Avaliando-se a Tabela 1 pode-se constatar que a

troca do grupo piridina em 1 pelo grupo fenol em 2 potencializou a atividade do composto frente as células U-937, HL-60 e Jukart, sendo similar a Dose Efetiva 50% (DE $_{50}$ ) dos dois compostos frente as células Molt-4 no tempo de 12 h. No entanto, nos tempos de 24 e 36 h, o composto 1 foi mais efetivo que o composto 2 frente a esta célula. Dentre as 5 células estudas, as células THP-1 foram as mais sensíveis, sendo o composto 1 o mais ativo na indução da morte por apoptose.

**Tabela 1.**  $DE_{50}$  (µmol/L) dos complexos **1** e **2**.

| Célula | Tempo de incubação (horas) |     |          |     |          |     |
|--------|----------------------------|-----|----------|-----|----------|-----|
|        | 12 h                       |     | 24 h     |     | 36 h     |     |
|        | Composto                   |     | Composto |     | Composto |     |
|        | 1                          | 2   | 1        | 2   | 1        | 2   |
| THP-1  | 34                         | 78  | 27       | 64  | 27       | 47  |
| U-937  | >400                       | 306 | >400     | 190 | >400     | 171 |
| HL-60  | >400                       | 188 | 286      | 155 | 228      | 149 |
| Jurkat | >400                       | 152 | >400     | 124 | 367      | 89  |
| Molt-4 | 301,4                      | 290 | 225      | 233 | 63       | 182 |

## Conclusões

O composto **2** foi mais ativo sobre as células U-937, HL-60 e Jurkat, sendo a célula THP-1, mais sensível ao composto **1**. Tais resultados indicam que a atividade anti-tumoral destes complexos é dependente da estrutura dos mesmos.

#### Agradecimentos

CNPq, FAPERJ.

30ª Reunião Anual da Sociedade Brasileira de Química

<sup>&</sup>lt;sup>1</sup> Fricker, P. S. Metal compounds in cancer Therapy. In the role of metals in cancer therapy. Chapman and Hall: London, 1994.

<sup>&</sup>lt;sup>2</sup> Boulikas, T. e Vougiouka, M. Oncology Report. 2003, 10, 1663.

<sup>&</sup>lt;sup>3</sup> Fernandes, C.; Parrilha, G. L.; Santiago, L. J. M.; Kanashiro, M. M.; Boniolo, F. S.; Bortoluzzi, A. J.; Vugman, N. V.; Herbst, M. H. e Horn Jr., A. *Inorganica Chimica Acta*. **2006**, *356*, 3367.

## Sociedade Brasileira de Química (SBQ)

<sup>4</sup> Bull, E. S.; Lessa, J. A.; Fernandes, C.; Horn Jr, A.; Bortoluzzi, A. J.; Catharino, R. R.; Benassi Neto, M.; Eberlin, M. N.; Kanashiro, M. M. e Côrtes, F. H. *XIII BMIC*, Fortaleza, **2006**, pág. 72.