Estudo da Interação entre Polióxido de Etileno e Quitosana

Tancredo Augusto de Carvalho Fontineles (IC), Alexandre Araújo de Souza (PQ), Cleide Maria Leite de Souza (PQ) e Carlos Pereira da Silva (IC).

Universidade Federal do Piauí - CCN - Departamento de Química - Campus da Ininga - 64049-550 - Teresina - PI.

Palavras Chave: Análise térmica, blenda polimérica, DSC, PEO, química computacional.

Introdução

As aplicações tecnológicas atuais normalmente exigem materiais com propriedades específicas que muitas vezes não podem ser alcançadas pelos materiais já existentes, fazendo-se necessária a modificação. A preparação de blendas poliméricas visa atingir esta meta.

Existem vários métodos para obtenção de blendas, sendo que os mais importantes são: por solução e por mistura mecânica¹. Neste trabalho foi utilizada a mistura por solução, para a preparação de blendas poliméricas de PEO e quitosana.

O polióxido de etileno (PEO) é um polímero formado por uma seqüência das unidades monoméricas -CH₂CH₂O-. A quitosana (Figura 1) é um aminopolissacarídeo obtido pela N-desacetilação da quitina.

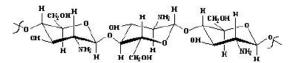


Figura 1. Estrutura química da quitosana.

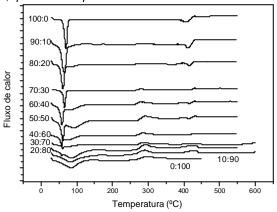
Neste trabalho, foram analisadas as interações entre o PEO e a quitosana em nível teórico, através de cálculos semiempíricos AM1, e experimental por meio de calorimetria exploratória diferencial (DSC).

Resultados e Discussão

Estudo Experimental

Os resultados abaixo se baseiam em curvas DSC para várias proporções de PEO/Quitosana.

Amostras com 100% de quitosana


- Temperatura de degradação da cadeia em torno de 300 °C.

Amostras com 100% de PEO

- Temperatura de fusão em torno de 70 °C.
- Temperatura de degradação de 410 °C.

Amostras em várias proporções de PEO/quitosana (vide Figura 2).

- Área do pico endotérmico relacionado à perda de água torna-se menor à medida que se adiciona PEO.
 - À medida que se aumenta a quantidade de PEO na blenda, diminuem-se as forças mecânicas das membranas.

Figura 2. Curvas DSC para amostras em várias proporções de PEO:Quitosana.

Estudo teórico

Considerando o critério de miscibilidade em blendas poliméricas, temos que:

 $?G_m = ?H_m - T.?S_m = 595,629 - 298,15 \cdot 0,241332 = 523,675 \text{ kcal/mol}$

Dos valores calculados pelo método semiempírico AM1, obtém-se um $?G_m$ de 523,675 kcal/mol, um valor muito alto e desfavorável à formação de uma mistura para os dois polímeros.

O valor de ?H_m está diretamente ligado ao número de interações entre as moléculas, quanto maior o número de contatos e maior a energia de interação menor será o ?H_m, favorecendo a miscibilidade. E quanto maior a entropia melhor a mistura. A entropia obtida pelo método AM1 é de 0,241 Kcal/mol um valor muito pequeno que desfavorece a interação.

Conclusões

A análise térmica por DSC mostrou que a mistura entre estes dois polímeros é compatível até certo ponto onde a proporção de PEO na mistura não é muito grande. Isso significa que as membranas com uma maior proporção de PEO não terão boas propriedades térmicas e mecânicas e, portanto, não podem ser aproveitadas.

Agradecimentos

PIBIC/CNPq/UFPI

¹ Utrack, L.A., "Polymer Alloys and Blends: Thermodynamics and Rheology", 1^a ed., Hanser Publishers, New York, 1990.