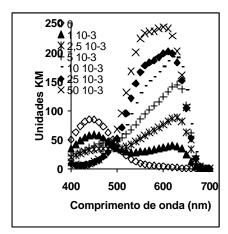
Determinação de alumínio em madeiras via espectroscopia de refletância difusa no visível.

Cynara C. K. Barreto (IC)^{1*}, Tereza C. M. Pastore (PQ)², Edson R. Silva Jr (PQ)², Marcela R. S. Amorim (IC)³, Vera T. R. Coradin (PQ)², Esmeralda Y. A. Okino (PQ)².

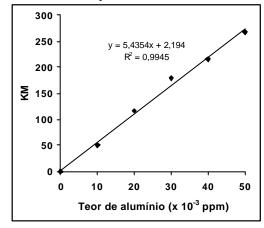
Palavras Chave: espécies acumuladoras, colorimetria, cromoazurol-S, sistema CIE-L*a*b*.

Introdução


A presença de alumínio na madeira de algumas árvores é característica que pode diferenciar famílias durante o processo de identificação botânica. Esse estudo pretende desenvolver metodologia para estimar o teor de alumínio na madeira por espectrocolorimetria, baseando-se no ensaio qualitativo com o indicador cromoazurol-S.

Como a madeira é um material muito heterogêneo, inicialmente construiu-se uma curva de calibração em papel de filtro (Whatman 42) embebido com soluções de Al⁺³ em concentrações variando de 0 à 50,00 x10⁻³ ppm. Após secagem a 40°C, o papel era borrifado com o indicador e novamente levado à estufa. As cores foram medidas no espectrômetro de refletância difusa (Datacolor Microflash, USA), utilizando o sistema CIE-L*a*b*.

Seguindo a mesma metodologia foi feita uma outra curva de calibração tendo o marupá como suporte (5,0x4,0x2,0 cm), pois essa madeira tem a superfície visualmente homogênea e branca. Os resultados expressam a média de seis medições.


As madeiras de bate-caixa (*Palicourea rigida*) e gomeira (*Vochysia thyrsoidea*), espécies do cerrado conhecidas por acumularem alumínio, serviram para testar a curva de calibração. Outras espécies deverão ser analisadas para completar esse estudo.

Resultados e Discussão

Figura 1. Espectros Kubelka-Munk de alumínio (ppm) revelado com cromoazurol-S no papel.

Aplicando a função Kubelka-Munk (KM) nas curvas de refletância, foram obtidos espectros similares aos de absorbância (Fig. 1). Isto possibilitou que o sinal refletido, medido no ponto de intensidade máxima de refletância em 610 nm, e o teor de alumínio seguissem uma relação linear.

Figura 2. Curva de calibração de alumínic impregnado na madeira de marupá.

A curva de calibração do alumínio embebido no marupá foi linear até 50,00 x 10⁻³ ppm e está exibida na Fig. 2. Essa curva foi testada com as madeiras bate-caixa (35,67 ppm) e gomeira (33,12 ppm). Os resultados encontrados são muito menores do que os valores obtidos por espectroscopia de absorção atômica¹ de 2.599 ppm e 3.748 ppm, respectivamente, provavelmente porque estão fora da faixa linear da curva de calibração.

Conclusões

A espectroscopia de refletância difusa no visível foi uma técnica adequada para quantificar até 50x10⁻³ ppm de alumínio em suporte de madeira de cor clara revelado com o indicador cromoazurol-S.

O teste feito com duas espécies acumuladoras de alumínio indicou corretamente que os resultados encontrados estavam além da faixa de linearidade da curva de calibração.

Agradecimentos

Ao CNPg pelas bolsas PIBIC.

¹Instituto de Química da Universidade de Brasília, 70910-900 Brasília DF.

²Laboratório de Produtos Florestais/IBAMA-SCEN Trecho 02, 70818-900 Brasília DF.

³Departamento de Engenharia Florestal da Universidade de Brasília, 70910-900 Brasília DF. cynarakern@yahoo.com.br.

¹Silva, F. C, 1990. Dissertação (Mestre em Ecologia) – Departamento de Ecologia. Universidade de Brasília, Brasília.