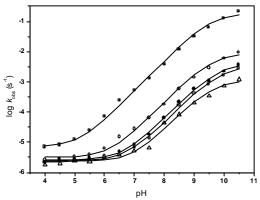
Catálise Básica Geral Intramolecular nas Reações entre Glicina e Aspirinas Substituídas

Natália B. Caon (IC)*, Elisa S. Orth (PG), Tiago A. S. Brandão (PG), Faruk Nome (PQ) nataliacaon@hotmail.com

Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis/SC.

Palavras Chave: glicina, aspirina, catálise intramolecular.


Introdução

Os estudos de modelos que mimetizam algumas particularidades de mecanismos enzimáticos têm atraído grande interesse, destacando-se a catálise intramolecular. A hidrólise da aspirina é um exemplo clássico de catálise intramolecular em reações de hidrólise, ¹ que permite prever a utilização da mesma como catalisador em reações de acilação. Assim, o objetivo desse trabalho foi estudar as reações entre glicina e æpirinas substituídas, avaliando o efeito de pH.

Resultados e Discussão

Os estudos cinéticos foram realizados por espectroscopia UV/VIS a 25 °C, em solução aquosa e força iônica 1,0 (KCI). As constantes de velocidade foram calculadas entre 300-400 nm de acordo com as aspirinas substituídas.

Na **Figura 1** está apresentado o perfil de pH para as reações entre a glicina e as aspirinas substituídas na forma aniônica (p K_a s < 4), 2 que é consistente com o **Esquema 1** e a **Equação 1**, a qual foi utilizada na determinação dos parâmetros cinéticos mostrados na **Tabela 1**.

Figura 1. Perfil de pH das reações entre glicina e aspirinas: (¦) 5-nitro-; (?) 5-cloro-; (?) 5-flúor-; (?) 5-metóxi- e (?) aspirina, a 25 °C, μ = 1,0 (KCI).

30ª Reunião Anual da Sociedade Brasileira de Química

Esquema 1

$$k_{obs} = (k_w + k_N [Glicina] \chi_{Glicina}) \chi_{AAS}$$
 (1)

Tabela 1. Parâmetros cinéticos para as reações de glicina com aspirinas substituídas.

Aspirina	<i>k</i> _w , 10 ⁻⁶ s ⁻¹	<i>k</i> _N , 10 ⁻² s ⁻¹
5-NO ₂	7,06	61,3
5-cloro	3,15	2,90
Н	2,46 ⁶	1,05
5-flúor	2,57 ⁶	1,32
5-metóxi	2,28 ⁶	0,336

Os dados da **Tabela 1** mostram que a glicina reage com uma constante de velocidade até 10^5 vezes maior que aquela da reação de hidrólise (k_w). Ainda, observa-se um efeito catalítico de 10 vezes na reação da glicina com as aspirinas substituídas, quando comparada com a reação de glicina com acetatos de fenila, 3 o que evidencia uma catálise intramolecular do grupo carboxilato.

Conclusões

O perfil de pH obtido é consistente com um mecanismo de catálise básica geral intramolecular do grupo carboxilato da forma monoaniônica da aspirina na reação com a glicina (Esquema 2)

 $X = 5-CI, 5-NO_2, 5-CH_3O, 5-F e H.$

Esquema 2

Agradecimentos

CNPq e PIBIC/CNPq-BIP/UFSC.

¹ St. Pierre, T.; Jencks, W. P. J. Am. Chem. Soc. 1968, 90, 3817.

² Fersht, A. R.; Kirby, A. J. J. Am. Chem. Soc, **1967**, 89, 4857.

Sociedade Brasileira de Química (SBQ)

³ Jencks, W.P.; Carriuolo, J. J. Am. Chem. Soc. **1960**, 82, 675.