Determinação de enxofre em derivados de petróleo por ICP OES após preparo das amostras como microemulsões.

Eliane Padua Oliveira¹ (PG), Ricardo Erthal Santelli^{1*}, (PQ), Maria de Fátima Batista Carvalho² (PQ), Aline Soares Freire¹ (IC), Marcos de Almeida Bezerra^{1,3} (PQ), santelli@geoq.uff.br.

1 - Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista s/n, Centro, Niterói/RJ, 24020-150. 2 - Centro de Pesquisas e Desenvolvimento da PETROBRÁS, Avaliação e Monitoramento Ambiental, Av. Jequitibá, 950, Cidade Universitária, Rio de Janeiro/RJ, 21941-598. 3 - Universidade Estadual do Sudoeste da Bahia, Laboratório de Química Analítica, Rua José Moreira Sobrinho s/n, Jequie/BA, 45206-190.

Palavras Chave: enxofre, microemulsões, derivados de petróleo, ICP OES, otimização multivariada.

Introdução

A quantificação de enxofre em combustíveis é de grande interesse econômico e ambiental devido à ação corrosiva de seus compostos e à formação de gases tóxicos como o SO₂ e o SO₃, durante a combustão dos produtos. Atualmente os órgãos governamentais vêm exigindo a redução do enxofre emitido na atmosfera pela queima de combustíveis fósseis. Este fato aumenta a necessidade de desenvolver métodos rápidos, exatos e com sensibilidade suficiente para análise de rotina destas amostras¹.

No presente trabalho foi utilizado metodologia multivariada no desenvolvimento de um procedimento analítico para determinação de enxofre em derivados de petróleo (diesel e querosene) por espectrometria de emissão óptica com plasma indutivamente acoplado (ICP OES) após preparo das amostras como microemulsões.

Resultados e Discussão

As microemulsões foram preparadas por adição de 0,25~mL de HNO_3 concentrado à $0,35~\mu\text{L}$ da amostra e submissão ao ultrassom por 10 minutos. Após, foi adicionado o 0,5~mL do surfactante (Triton X-100, 10% v/v), e a quantidade de água desionizada suficiente para completar os 5~mL do balão volumétrico e novamente submissão ao banho de ultrassom por 40 min.

Para evitar depósitos de carbono nos cilindros internos da tocha decorrente da queima incompleta do material orgânico, uma corrente de ${\sf O}_2$ foi introduzida no plasma.

Uma matriz Doehlert² para três variáveis foi usada na otimização das vazões de fluxos do argônio (gás do plasma e sheat gas) e do oxigênio. Como resposta, foi utilizada a razão sinal/ruído.

Os resultados mostraram o aumento da vazão do "sheat gás" tem o maior efeito significativo na melhoria da resposta. Foi observado também que, no intervalo experimental estudado, a vazão do gás do 30º Reunião Anual da Sociedade Brasileira de Química

plasma não apresentou nenhum efeito e a vazão do O_2 no seu menor nível já é o suficiente para diminuir o fundo e evitar o depósito de fuligem na tocha.

O método desenvolvido possibilita determinar enxofre com limite de detecção de 3,3 μg L⁻¹. A precisão (%RSD, n = 10) para 20 μg mL⁻¹ foi igual a 3,7%. A exatidão foi avaliada por análise de dois materiais de referência certificados: NIST 2723a, Sulfur in diesel fuel oil e NIST 1616b, Sulfur in kerosene (Tabela 1).

Tabela 1. Determinação de enxofre em material de referência certificado de querosene e diesel (N=3).

Amostra	Valor certificado*	Valor encontrado*
NIST 2723a	11,0 ± 1,1	11,1 ± 0,5
NIST 1616b	8,41 ± 0,12	8,0 ± 0,6

^{*} valores em mg/Kg

Conclusões

O procedimento analítico desenvolvido permite a determinação de enxofre de forma eficiente e rápida pela introdução direta das amostras no plasma na forma de microemulsões.

Os resultados obtidos pela análise de material de referência certificado mostram que o procedimento apresenta exatidão e sensibilidade suficiente para determinação de enxofre em quantidades abaixo de 50 mg kg⁻¹ conforme será exigido depois do ano 2009 pelo Conselho Nacional de Meio Ambiente (Conama).

Agradecimentos

CNPq, CAPES, FAPERJ

¹ Werston, K.C., Hilligoss, D.R. Atomic spectrometry **2001**, 22, 244

² Ferreira SLC, dos Santos WNL, Quintella CM, Neto BB, Bosque-Sendra JM., Talanta **2004**, 63, 1067