Síntese, caracterização espectroscópica e estrutural de compostos de adição de Zn(NCS)₂, Cd(NCS)₂ e Hg(SCN)₂ com a-diiminas

Leonardo da Cunha Ferreira(PG)¹, Carlos Alberto Lombardi Filgueiras (PQ)*, Lorenzo do C. Visentin (PQ)¹, Bruno G. Loschiavo de Freitas (IC)¹, Jairo Bordinhão (PQ)¹ e Manfredo Hörner (PQ)²

Palavras Chave: a-diiminas, estruturas cristalinas, mercúrio, cádmio e zinco

Introdução

Foram sintetizadas as α -diiminas **1** e **2**, mostradas abaixo, e seus adutos com $Zn(NCS)_2$, $Cd(NCS)_2$ e $Hg(SCN)_2$. Ligantes semelhantes já haviam sido utilizados para a síntese de complexos com diferentes aplicações, destacando-se dentre elas, o uso como catalisadores para a polimerização de olefinas . No presente trabalho, mostram-se a síntese e as propriedades estruturais e espectroscópicas dos complexos de $Zn(NCS)_2$ (C_{60} , H_{48} , N_8 , S_4 , Zn_2) e $Cd(NCS)_2$ (C_{60} , H_{48} , N_8 , S_4 , Zn_2) com **1** e de $Hg(SCN)_2$ com **1** (C_{30} , H_{24} , N_4 , S_2 , Hg) e **2**(C_{34} , H_{32} , N_4 , S_2 , Hg).

Resultados e Discussão

Os ligantes e os complexos foram sintetizados *in situ* em metanol, sob refluxo, com ácido acético como catalisador. Os rendimentos giram em torno de 85%. Os quatro complexos foram caracterizados por CHN e estudados por I.V, ¹HRMN e cristalografia de Raios X.

O esquema abaixo mostra a síntese dos complexos.

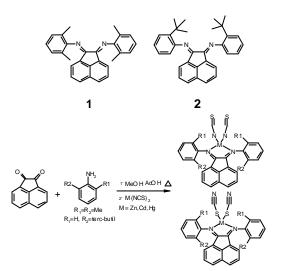
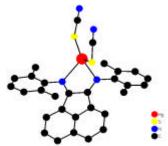
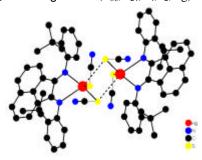




Figura 1: Ligantes preparados (1 e 2) e esquema de reações de síntese dos complexos.

Figura 2: Estrutura molecular do complexo de $Hg(SCN)_2$ com o ligante **1** $(C_{30},H_{24},N_4,S_2,Hg)$.

Figura 3: Estrutura molecular do complexo de $Hg(SCN)_2$ com o ligante $\mathbf{2}(C_{34}, H_{32}, N_4, S_2, Hg)$.

Conclusões

Com Zn(NCS)₂ e Cd(NCS)₂ só se obtiveram complexos com 1, os quais são dímeros com uma unidade SCN terminal e a outra em ponte, e o metal no centro de uma bipirâmide trigonal distorcida. Já com Hg(SCN)₂, o complexo com 1 é monomérico e tetraédrico em torno do metal, já com 2 o metal está no centro de um tetraedro altamente distorcido, com interações fracas que levam a um dímero.

Agradecimentos

CNPq, DQI-UFRJ

[1]-Koten, G.V.; Vrieze, K., Advances in Organometallic Chemistry, **1980**, 21, 151-233.[2]-Poel, H.V.D.; Koten, G.V. Synth. Commun, **1978**, 8, 305.

[2]-Heinberg,H.; Johansson, Lars.;Gropen,O., *J.Am.Chem.Soc*, **2000**,122,10831- 10845.

¹ Instituto de Química - Universidade Federal do Rio de Janeiro-UFRJ-CP 68563 – 21945-970 Rio de Janeiro - RJ

²Departamento de Química – Universidade Federal de Santa Maria, Santa Maria, RS.

^{*}e-mail: calf@iq.ufrj.br