Efeito SERS do azul de metileno adsorvido em colóide de prata.

Flavio A. Trindade (PG), Elen D. S. Santos (IC), Paulo A. Z. Suarez (PQ) e Joel C. Rubim (PQ)* jocrubim@unb.br

Laboratório de Materiais e Combustíveis (LMC) do Instituto de Química da UnB, CP.04478, 70919-970, DF, Brasil.

Palavras Chave: SERS, colóide de prata, azul de metileno.

Introdução

A intensificação do espalhamento Raman por superfície – efeito SERS (surface-enhanced Raman scattering) ocorre via dois mecanismos: i) ressonância do campo elétrico incidente com o plasma de superfície (SPP) e ii) ressonância eletrônica assistida por fótons, envolvendo estados eletrônicos do complexo metal-adsorbato.¹ Os fatores de intensificação do espalhamento Raman podem chegar a 10⁹ ou mais, permitindo a detecção de uma única molécula (single molecule detection).²

O efeito SERS do azul de metileno (MB) já foi observado para eletrodos de Ag e Au, e em colóides de ouro.³ Porém, nenhum estudo existe sobre colóides de Ag. O objetivo deste trabalho é investigar o efeito SERS de MB adsorvido em colóide de Ag e avaliar o efeito da concentração de íons Cl⁻ e MB nas intensidades observadas.

Os espectros FT-SERS (1064 nm) foram obtidos num interferômetro Equinox 55 da Bruker, com resolução de 8 cm⁻¹ e 128 varreduras. A solução de colóide de Ag foi preparada pela redução de solução de AgNO₃ com citrato de sódio.

Resultados e Discussão

A Fig.1 mostra os espectros FT-Raman do MB adsorvido em colóide de Ag (a) e em solução (b).

Figura 1. Espectros do MB na presença de colóide de prata (a) e em solução (b). $[MB] = 2,4x10^{-4} M.$

Considerando o raio médio da nanopartícula de Ag como sendo 100 nm, infere-se que o número de moléculas de MB que dão origem ao espectro da Fig.1 (a) é 10⁶ vezes menor que o número de moléculas de MB responsáveis pelo espectro da Fig. 1(b). Portanto, o fator de intensificação deve ser bem maior que 10⁶, uma vez que nenhum sinal do MB é observado na Fig.1(b). Os resultados da Fig.2 mostram o efeito da adição de íons Cl⁻.

A maior intensificação foi obtida para 10⁻² M de cloreto. Íons Cl⁻ causam a agregação das nanopartículas, deslocando a excitação do SPP para o infravermelho próximo e a precipitação dos agregados maiores (redução da intensidade de fundo).

Figura 2. Espectros SERS do MB para $[CI^{-}] = (a)$ 10⁻⁴ M ,(b) 10⁻³ M, (c) 10⁻² M, (d) 5x10⁻² M e (e) 10⁻¹ M. [MB] = 2,4x10⁻⁴ M.

Para concentração de $Cl^{-} = 10^{-2}$ M, variou-se a concentração de MB, tendo sido possível obter sinal SERS do MB até a concentração de 10^{-8} M (Fig.3).

Conclusões

O efeito SERS do MB adsorvido em colóide de Ag apresenta fator de intensificação > 10^6 , sendo influenciado pela presença de íons Cl⁻. A concentração ótima de Cl⁻ foi de 10^{-2} M, tornando possível a detecção de MB até concentração de 10^{-8} M.

Agradecimentos

CNPq, Finatec.

Sociedade Brasileira de Química (SBQ)

- ¹ Faria, D.L.A.; Temperini, L.A.; Sala, O. ; *Química Nova* 1999, 22, 541.
 ² Tolaieb, B.; Constantino, C.J.L.;, Aroca, R.F. Analyst 2004, 129.
- 337.
 ³ Nicolai, S.H.A.; Rubim, J.C.; *Langmuir* 2003, *19*, 4291.