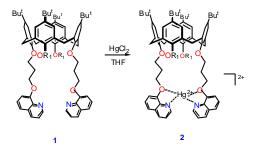
Uso de 8-oxiquinolinacalix[4]areno como ionóforo e fluoróforo na detecção e extração de Hg²⁺ Cd²⁺ e Pb²⁺.

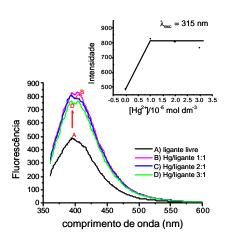
Anderson W. Ferrari¹(IC), Koiti Araki¹ (PQ), Henrique E. Toma¹(PQ), Izilda A. Bagatin^{1,2,3*}(PQ).

*e-mail: ibagatin@uol.com.br.


Palavras Chave: calixareno, extração, ionóforo.

Introdução

O foco em reconhecimento seletivo e extração de espécies aniônicas e catiônicas de importância bioquímica e ambiental têm gerado trabalhos interessantes na linha de ionóforos. A habilidade no reconhecimento de cátions metálicos e moléculas orgânicas pelos calixarenos são algumas de suas propriedades mais notáveis. É crescente o número de trabalhos voltados, para sistemas com potenciais aplicações em extração seletiva de metais pesados e ânions tóxicos^{1,2}, assim como no reconhecimento aniônico e catiônico, fluoróforos³ e catálise. Neste trabalho investigamos o uso de calixarenos modificados com quinolina frente à detecção e extração de cátions problemas, como Hg²+, Cd²+ e Pb²+.


Resultados e Discussão

Os ensaios de extração foram feitos partindo da mistura de 5 mL de cada uma das soluções do metal problema e do ligante extrator 1(calixareno). A concentração utilizada do ligante foi 1 x 10⁻⁵ mol dm⁻³ (em CH₂Cl₂) e dos sais metálicos variava de 0,3 a 3 x 10⁻⁵ mol dm⁻³ (em H₂O). A mistura foi transferida para um balão volumétrico em um banho a 30°C. O equilíbrio de extração foi alcançado após 1 hora de agitação e o balão ficou em descanso por 15 minutos para completa separação. Os resultados apresentam isosbésticos no espectro de absorção eletrônica, mostrando um equilíbrio de formação de uma espécie M:L (1:1) de acordo com o esquema abaixo:

O acompanhamento da extração, utilizando medidas de fluorescência, confirmou que o sistema extrator 1 29^a Reunião Anual da Sociedade Brasileira de Química

aumenta sua emissão em $\lambda_{em} = 394$ nm com a coordenação de um metal ao grupo quinolina do ligante (fig.1), alcançando o equilíbrio em 1:1 (M:L). **Figura 1.** Monitoramento de extração de Hg^{2+} , via espectro de emissão do ligante 1 em CH_2Cl_2 .

Conclusões

No presente estudo, confirma-se a excelente propriedade de ligação e extração do ligante 1 também para metais pesados, formando complexos estáveis com Hg²⁺, Pb²⁺ e Cd²⁺, indicando a razão 1:1 (cátion/ligante). A sinalização obtida através de medidas de fluorescência mostra que esse sistema age com um bom sensor para cátions metálicos.

Agradecimentos

Os autores agradecem a Renami/CNPq e Fapesp pelo apoio financeiro e pela bolsa pesquisador (I.A.B) cedida pela Universidade Anhembi-Morumbi.

¹Instituto de Química, Universidade de São Paulo, Cx. P.: 26077, CEP 05513-970, São Paulo, SP.

²Universidade Anhembi-Morumbi, rua Casa do Ator, 90, São Paulo, SP.

³End. Atual: Universidade Bandeirantes de São Paulo, Rua Maria Cândida, 1813, CEP: 02071-013, São Paulo, SP.

¹ Georgiev, E.M., Wolf, N., Roundhill, D. M. Polyhedron, **1997**, *16*, 1581

² Yordanov, A. T., Roundhill, D. M. Inorg. Chim. Acta, **1998**, 270, 216.

³ Valeur, B., Leray, I., Coord. Chem. Rev., **2000**, 205, 3.

Sociedade Brasileira de Química (SBQ)