Fotoquímica de Benzil

Anderson Carvalho Passos¹ (IC), José Carlos Netto Ferreira¹ (PQ) *jcnetto@ufrrj.br*

(1) Instituto de Química - Universidade Federal da Bahia - Campus de Ondina - Salvador – Bahia cep 40170-490

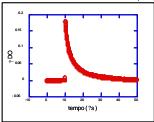
Palavras Chave:Benzil, fotólise por pulso de laser, abstração de hidrogênio

Introdução

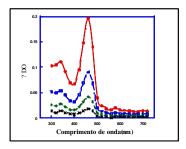
As propriedades fotofísicas do estado excitado triplete de benzil em solução e em sistemas organizados foram extensivamente estudadas. entretanto pouco sabe se acerca do comportamento fotoquímico em presença supressores que atuam por transferência de energia, de hidrogênio ou de elétron. Assim, visando o entendimento das reações de Benzil no estado excitado triplete, foram determinadas as suas constantes de velocidade de reação frente a diferentes supressores, empregando a técnica da fotólise por pulso de laser.

Resultados e Discussão

A fotoquímica de benzil foi investigada utilizando-se a fotólise por pulso de laser de nanossegundo (3°. harmônico Nd/YAG, ?_{exc}=355 nm; 7mJ/pulso; pulso de 10 ns). O transiente gerado a partir do benzil mostrou ?_{max}=460 nm e ?=7,2 ?s, em acetonitrila.


Tabela 1. Constantes de velocidade de supressão para o estado excitado triplete de benzil em ACN

Supressor	k _q (L.mol ⁻¹ s ⁻¹)
<i>cis</i> -estilbeno	5,3 X 10 ⁸
fenol	3,7 X 10 ⁸
para-clorofenol	1,8 X 10 ⁸
<i>meta-</i> clorofenol	2,0 X 10 ⁸
para-tercbutilfenol	2,7 X 10 ⁸
meta-cresol	1,7 X 10 ⁸
para-cresol	2,3 X 10 ⁸
resorcinol	2,2 X 10 ⁸
hidroquinona	3,0 X 10 ⁹
<i>meta</i> -metoxifenol	1,7 X 10 ⁸
<i>para</i> -bromofenol	1,5 X 10 ⁸
<i>para</i> -cianofenol	1,2 X 10 ⁸
<i>para</i> -fenilfenol	2,6 X 10 ⁸
<i>meta-</i> fluorfenol	1,8 X 10 ⁸
<i>para</i> -fluorfenol	3,9 X 10 ⁷
cicloexano	1,9 X 10 ⁶
2-propanol	3,1 X 10 ⁶
indol	1,6 X 10 ⁹
DABCO	2,3 X 10 ⁹
Tolueno	3,8 X 10 ⁶


A constante de velocidade de supressão de benzil por *cis*-estilbeno (E_T =54,3 kcal/mol) émenor do que a constante de velocidade de difusão o que está de acordo com o valor experimental para a sua energia triplete¹ (E_T =53,3 kcal/mol).

Os valores para a constante de velocidade de abstração de hidrogênio por tolueno, cicloexano e 2-propanol, da ordem de 10⁶ L.mol⁻¹s⁻¹ são característicos de um estado excitado triplete n?*.

Figura 1. Curva de Decaimento para o estado excitado triplete de Benzil em ACN (?_{mon}=460nm).

Figura 2 Espectro de absorção triplete-triplete para Benzil em acetonitrila.

Conclusões

A excitação do Benzil em acetonitrila levou à formação do seu estado excitado triplete (?max=460 nm e ?T=7,2 µs). As constantes de velocidade de abstração de hidrogênio frente a fenóis contendo substituintes polares são independentes do substituinte, sendo menores do que a observada para indol, sendo observada, em todos os casos, a formação do radical cetila. Para DABCO a transferência de elétron é altamente eficiente, gerando o ânion radical do benzil.

Agradecimentos

FAPESB, FINEP, CNPq.

¹⁻ S.L. Murov, I. Carmichael, G.L. Hug - *Handbook of Photochemistry*, Marcel Dekker, 2nd Edition, 1993, NY