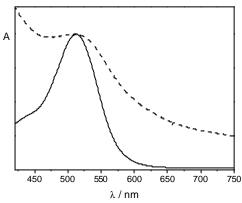
Dye-Cells[®] obtidas com extratos naturais de framboesa e mirtilo como fontes de energia limpa e renovável

Antonio Otávio de Toledo Patrocínio (PG), André Sarto Polo (PG), Neyde Yukie Murakami Iha(PQ)*

Laboratório de Fotoquímica Inorgânica e Conversão de Energia - Instituto de Química - Universidade de São Paulo

Palavras Chave: Dye-Cells ®, sensibilizadores naturais


Introdução

Células solares sensibilizadas por corantes, *Dyecells*® são uma fonte alternativa de energia ambientalmente correta, de baixo custo e que contribuem para o desenvolvimento sustentável.

O estudo envolvendo a obtenção de células solares sensibilizadas por extratos naturais foi estendido à dois novos extratos, de famboesa (*Rubus idaeus*) e de mirtilo (*Vaccinium myrtillus L.*).

Resultados e Discussão

Filmes de TiO_2 nanocristalinos e mesoporosos com $(8\pm2)~\mu m$ de espessura e com tamanho de partícula de (90 ± 20) nm foram preparados pela técnica painting e sensibilizados pelos extratos naturais. Ambos os extratos apresentam bandas intensas de absorção na região visível e adsorvem-se à superfície do semicondutor. A adsorção sensibiliza o TiO_2 na região do visível e provoca um deslocamento batocrômico nos máximos de absorção das antocianinas, Figura 1.

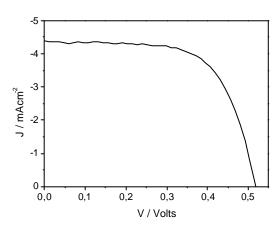


Figura 1. Espectro eletrônico do extrato aquoso de framboesa (—) e do fotoanodo sensibilizado (----).

As células solares sensibilizadas pelos extratos naturais empregados apresentam boa absorção de luz e são capazes de injetar elétrons na banda de condução do semicondutor convertendo luz em eletricidade. O desempenho das células foi avaliado através da densidade de corrente de curto-circuito, J_{sc} , potencial de circuito aberto, V_{oc} , densidade de potência, P_{max} e fator de preenchimento, ff, Tabela 1,

29ª Reunião Anual da Sociedade Brasileira de Química

determinados a partir das curvas corrente-potencial, Figura 2.

Figura 2. Curva corrente-potencial de células solares obtidas com fotoandodos sensibilizados com extrato de framboesa

Tabela 1. Parâmetros fotoeletroquímicos das células solares sensibilizadas com extratos naturais.

Extrato	J _{sc} /	V _{oc} /	P _{max} /	ff
	mA.cm ⁻²	Volts	mW.cm ⁻²	
Framboesa	4,30	0,52	1,50	0,65
Mirtilo	0,39	0,41	0,81	0,51

Observou-se que, apesar de ambos os extratos apresentarem intensa absorção na região do visível, a células solare obtidas com o extrato de framboesa mostrou-se mais eficiente do que aquela com o extrato de mirtilo.

Conclusões

Os extratos naturais promovem a conversão eficiente de luz em eletricidade quando utilizados como sensibilizadores de semicondutores Portanto são uma opção de baixo custo para a produção de célula solares e adequadas para propósitos educacionais.

Agradecimentos

FAPESP, CNPq

A.S. Polo, M.K. Itokazu, N.Y. Murakami Iha; Coord Chem. Rev. 2004 (13-14) 1343 - 1361.

^{*} neydeiha @ig.usp.br