Estudo comparativo dos mediadores ácido 5 amino salicílico e iodeto de potássio para monitoramento da enzima peroxidase

Carolina V. Uliana (IC)*, Carla S. Riccardi (PQ), Hideko Yamanaka (PQ). *uliana@grad.iq.unesp.

Unesp, Instituto de Química, Departamento de Química Analítica, Campus de Araraquara.

Palavras Chave: ácido 5-amino salicílico, iodeto de potássio, peroxidase.

Introdução

A enzima peroxidase tem sido utilizada na construção de biossensores de afinidade por manter uma resposta estável, por longos períodos de tempo a temperatura ambiente e em um amplo intervalo de pH além de ser relativamente de baixo custo financeiro.

Para melhorar a velocidade de transferência eletrônica quando a enzima sofre a reação redox com o peróxido de hidrogênio, emprega-se um mediador de elétrons, sendo que este deve reagir rapidamente com a peroxidase oxidada.

O ácido 5-amino salicílico (5-ASA) tem sido usado como substrato não-carcinogêneo para a enzima peroxidase (HRP) em imunoensaios enzimáticos com detecção ótica, potenciométrica e amperométrica¹.

O presente trabalho apresenta uma comparação do monitoramento da atividade da enzima peroxidase em solução utilizando o ácido 5-amino salicílico e o iodeto de potássio como mediadores redox.

Resultados e Discussão

Os experimentos de voltametria e amperometria (potenciostato/galvanostato EG&G mod.263) foram realizados utilizando grafite, Ag/AgCl e fio de platina como eletrodo de trabalho, referência e auxiliar, respectivamente.

Para a otimização dos sistemas de substratos (5-ASA/ H₂O₂ ambos em 1x10⁻³ mol L⁻¹; KI/ H₂O₂ 3x10⁻³ e 1x10⁻³ mol L⁻¹, respectivamente) no monitoramento da atividade da enzima peroxidase em solução, foram avaliados os parâmetros: potencial aplicado na técnica amperométrica, valor do pH do eletrólito de suporte e tempo de incubação dos eletrodos nas soluções dos substratos antes das medidas.

A Tabela 1 mostra uma comparação dos valores obtidos bem como a diferença entre a intensidade de corrente obtida quando na ausência e presença da HRP para ambos os sistemas.

O sistema $5\text{ASA/H}_2\text{O}_2$ apresentou um menor do potencial de redução (-0,125V) em relação ao sistema KI/H $_2\text{O}_2$ (-0,450V), minimizando a influência de eventuais interferentes.

A resposta eletroanalítica para o sistema $\frac{1}{4}$ O₂/KI é, significantemente, influenciada a baixos valores de pH (< 6,0), uma vez que se observou um aumento da intensidade de corrente catódica na ausência da enzima HRP em solução tampão acetato de sódio pH 5,6².

Tabela 1: Comparação entre os sistemas de monitoramento da reação catalisada pela enzima HRP.

Parâmetros	Substratos Enzimáticos	
	H ₂ O ₂ /KI	5-ASA/H ₂ O ₂
Potencial aplicado	-0,450 V	-0,125 V
рН	6,9	5,0
Tempo de incubação	15 min	2 min
I do branco (A)	-1,27μΑ	- 0,019 μΑ
I para 1,0 U mL ⁻¹ HRP	-2,06μΑ	-2,88 μΑ
(B)		
(B)-(A)	-0,79 μΑ	-2,86 μΑ

O monitoramento da enzima peroxidase pelo sistema $5\text{-ASA/H}_2\text{O}_2$ pode ser efetuado com apenas dois minutos de incubação, diminuindo, consideravelmente o tempo total de análise.

O sistema 5-ASA/ H_2O_2 apresenta uma corrente residual menor que o sistema KI/ H_2O_2 , aumentando a sensibilidade do método; o valor de intensidade de corrente para o sistema 5ASA/ H_2O_2 (-2,86 μ A) foi, aproximadamente, 4 vezes superior ao H_2O_2/KI (-0,79 μ A) na presença de 1,0 unidade HRP mL⁻¹.

Conclusões

O emprego do 5ASA mostrou-se mais eficiente do que KI como mediador da enzima HRP.

Agradecimentos

FAPESP

¹ Solna, R.; Skladal, P.; Eremin, S. A. Int. J. Environ. Anal. Chem. **2003**, 83, 609.

Sociedade Brasileira de Química (SBQ)

² Riccardi, C. S. Estudos sobre imunossensor para atrazina. 2001, Dissertação de mestrado, Instituto de Química – UNESP – CAr.