Desorção Redutiva em Meio Alcalino: Evidência do Efeito Retirador de Densidade p do Ligante 4-Cianopiridina em Adsorbatos Inorgânicos.

¹Solange de O. Pinheiro (PG), ²Márcia L. A. Temperini (PQ), ²Gustavo F. S. Andrade (PG), ¹Izaura C. N. Diógenes (PQ), ^{*}

Palavras Chave: SAMs, Adsorbatos Inorgânicos, LSV.

Introdução

SAMs (Self Assembled Monolayers) de espécies tióis formadas sobre ouro têm sido estudadas por desorção redutiva em meio alcalino (KOH 0,5M) por voltametria linear de varredura de acordo com a reação de eletrodo (1): RS? Au + e-? RS-+ Au. Os resultados de potencial de desorção redutiva (E_{dr}) e de carga de desorção (s_{dr}) obtidos a partir desse processo permitem avaliar, respectivamente, a força da ligação entre a superfície e o adsorbato e a quantidade de material adsorvido (?). O objetivo deste trabalho é estudar as SAMs formadas com os complexos trans-[Ru(CNPy)(NH₃)₄(1,4-dt)]²⁺ (1) e trans-[Ru(CNPy)(NH₃)₄(pyS)]²⁺ (2), onde CNPy = 4cianopiridina, pyS = 4-mercaptopiridina (pyS) e 1,4-dt = 1,4-ditiano, em consequência da imersão do eletrodo de ouro (A=0,03 cm²) em solução aquosa 2 mM destas espécies. Em uma etapa anterior ao estudo de desorção procedeu-se a caracterização por espectroscopia SERS (Surface Enhanced Raman Scattering) das superfícies modificadas. potenciais citados no texto referem-se ao eletrodo Ag|AgCI|CI (KCI 3,5 M) a 25°C.

Resultados e Discussão

Os espectros SERS das superfícies modificadas com os complexos isolados apresentaram intensificação relativa dos modos vibracionais associados aos estiramentos CS dos ligantes pyS e 1,4-dt indicando que o processo de quimisorção ocorre através do átomo de enxofre. A análise comparativa entre os espectros Raman normal e SERS permite a sugestão da configuração geométrica dos adsorbatos bem como o tipo de interação (s ou p) com os átomos de ouro. As variações de freqüência das bandas atribuídas ao estiramento CS do ligante 1,4-dt(de 250 a 645 cm⁻¹) sugere uma orientação gauche do complexo (1) em relação à superfície e uma interação do tipo p. Para o complexo (2), a intensificação relativa e o deslocamento do modo vibracional atribuído ao estiramento C=S do ligante pyS de 1120 cm⁻¹ no espectro Raman normal para 1090 cm⁻¹ no

espectro SERS indica uma interação s e uma configuração *trans* em relação à superfície.

As curvas de desorção das SAMs estudadas apresentaram apenas uma onda atribuída a reação (1), com E_{dr} em -0.52 e -0.64 V para os adsorbatos (1) $(? = 9.61 \times 10^{-11} \text{ mol/cm}^2)$ e (2) $(? = 4.46 \times 10^{-11})$ mol/cm²), respectivamente. Para os ligantes livres, 1,4-dt ($E_{dr} = -0.87 \text{ V}$) e pyS ($E_{dr} = -0.54 \text{ V}$, ? = 5,74 x 10⁻¹⁰ mol/cm²), observa-se uma maior força da ligação Au? S (E_{dr} mais negativo) quando se tem interação p (1,4-dt). A coordenação a um centro metálico com capacidade de interação p-"back-bonding" fortalece a ligação Au? S, deslocando negativamente o valor de E_{dr} como observado para o complexo [Ru(CN)₅(pyS)]³⁻ $(E_{dr} = -0.73 \text{ V e }? = 4.20 \text{ x } 10^{-10} \text{ mol/cm}^2)$. Esperavase que a coordenação ao centro metálico [Ru(NH₃)₄]²⁺ no complexo (2) implicasse em um fortalecimento ainda mais significativo, uma vez que, ao contrário dos grupos CN-, os ligantes NH3 são espécies p inocentes. O deslocamento observado em relação ao valor de E_{dr} do ligante pyS, relativamente menor que o esperado, é atribuído a capacidade p retiradora do ligante CNpy. Para o complexo (1), o valor de E_{dr} é mais positivo que para o ligante 1,4-dt livre. Nesse caso, a competição pela densidade p do centro metálico é mais intensa por causa das ligações p do ligante 1,4-dt com os átomos de ouro e de rutênio.

Os valores de ? indicam que a repulsão entre os adsorbatos catiônicos implica em um menor grau de empacotamento, comparativamente as espécies neutras e aniônica. Adicionalmente, a configuração gauche do adsorbato (1) permite um maior empacotamento sobre a superfície, em relação ao adsorbato (2).

Conclusões

Os resultados de E_{dr} indicam que a capacidade p retiradora do ligante CNpy é mais intensa sobre o ligante 1,4-dt em consequência da competição pela densidade p do metal Ru^{II}. Os valores de ? refletem o grau de repulsão entre os adsorbatos adjacentes e o arranjo geométrico destes na superfície.

Agradecimentos

¹Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará. Cx. Postal 12200, CEP: 60451-970, Fortaleza-CE. <u>izaura@dgoi.ufc.br</u>

²Instituto de Química de São Paulo, Universidade de São Paulo, Cx. Postal 26077, CEP: 05599-970, São Paulo-SP.

Sociedade Brasileira de Química (SBQ)

Os autores agradecem a UFC, FUNCAP, FAPESP, CAPES e CNPq.