Relaxação spin-spin de ¹H em baixa resolução de emulsões de n-decano/água estabilizadas por b-caseína.

Clarice N. Barros (PG), Elizabeth P.G. Arêas (PQ), Eliane N. Figueiredo (IC), José A.G. Arêas (PQ)

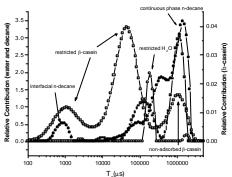
Palavras Chave: b-caseína, emulsões, RMN.

Introdução

O leite e seus derivados constituem sistemas coloidais complexos em que eventos envolvendo interfaces representam papel central. O estudo de sua dinâmica, muitas vezes mais factível em sistemasmodelo, é desejável por ampliar o conhecimento e as possibilidades de controle de propriedades texturais e físico-químicas de interesse.

As caseínas são as principais proteínas do leite. Uma de suas frações, a β -caseína, possui notável caráter anfifílico, representado por uma região N-terminal carregada negativamente devido à presença de 5 grupos serina-fosfato e uma região C-terminal hidrofóbica.

Neste trabalho estudamos emulsões A/O de água/ndecano estabilizadas por β -caseína. Foi investigada a dinâmica dos componentes da emulsão, refletida em seus parâmetros de relaxação spin-spin, T_2 , através de experimentos de ressonância magnética nuclear de 1 H em baixa resolução (LR NMR). Empregou-se um processo de deuteração seletiva que permitiu identificarem-se populações com mobilidades distintas que foram correlacionadas aos diferentes componentes das emulsões. 1


Resultados e Discussão

Quatro amostras de composição aproximadamente similar foram preparadas, diferindo apenas no componente deuterado (**Tabela 1**).

Tabela 1 Composição isotópica das emulsões ndecano/água estabilizadas por β -caseína

	β-caseina	Fase oleosa	Fase aquosa
Amostra 1	Não-deuterada	H ₂₂ -n- decane	H ₂ O
Amostra 2	H´s lábeis deuterados	H ₂₂ -n- decane	D ₂ O
Amostra 3	Não-deuterados	d ₂₂ -n-decane	H ₂ O
Amostra 4	H´s lábeis deuterados	d ₂₂ -n-decane	D ₂ O

Experimentos de relaxação spin-spin foram realizados nas amostras indicadas na **Tabela 1** e em cada componente isolado, empregando-se a seqüência de pulso CPMG^{2,3}. As curvas de decaimento do eco foram ajustadas por exponenciais múltiplas contínuas, através do programa WinDXP (**Figura 1**).

Figura 1. Curvas de distribuição de T_2 normalizadas por ganho, número de varreduras e massa de protons de cada componente ($\blacksquare \blacksquare$ amostra 1; $\bullet \bullet$ amostra 2; $\bigcirc \bigcirc$ amostra 3; $\square \square$ amostra 4):

A comparação dos perfis das curvas de distribuição de T_2 das emulsões com aqueles obtidos para os seus componentes puros permitiu a atribuição dos picos às diferentes populações dinâmicas que compõem os sistemas (**Figura 1**).

Conclusões

Um conjunto de populações dinamicamente distintas foi identificado. Uma população prevalente de ndecano apresentou mobilidade muito próxima daquela do solvente puro, o que permitiu sua atribuição à microfase contínua da emulsão. A mobilidade da β -caseína mostrou-se compatível com sua localização na interface óleo/água. Além disso, uma população de moléculas de H_2O com T_2 muito reduzido foi detectada e atribuída à água interfacial.

Agradecimentos

FAPESP, CNPq.

¹Departamento de Nutrição, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP; ²Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP.

¹ Barros, C.N., Arêas, E.P.G., Figueiredo, E.N., Árêas, e J.A.G. *Colloids Surfaces B: Biointerfaces*, no prelo.

²Carr, H.Y. e Purcell, E.M. *Phys. Rev* **1954**, *94*, 630.

³Meiboom, S. e Gill, D. Rev. Sci. Instrum. 1958, 29, 688.