Utilização de aluminossilicatos como agente seqüestrantes de íons crômio provenientes de curtumes.

Liziane Marçal¹(IC), Lucas A. Rocha¹(PG), Rosângela M. de Freitas¹(IC), Andréa P. Carnizello¹(PG), Guiomar Mata³(PG), Katia J. Ciuffi¹(PQ)*, Eduardo J. Nassar¹(PQ), Paulo S. Calefi¹(PQ), Zênis N. Rocha²(PQ), Miguel A. Vicente³(PQ), Antonio Gil⁴(PQ).

e-mail: ciuffi@unifran.br

Palavras Chave: adsorvente, crômio, aluminossilicato.

Introdução

A atividade industrial tem contribuído para um aumento significativo nas concentrações de íons metálicos em águas. Resíduos industriais contendo íons metálicos, como o crômio possuem alto potencial tóxico e como estes metais biocumulativos, há uma crescente exigência por parte da sociedade e de órgãos públicos no sentido de diminuir esta contaminação em índices toleráveis pelos organismos. O crômio, bastante utilizado pelas indústrias de curtimento de couro, representa uma importante fonte de contaminação, e pode facilmente atingir os lençóis freáticos e rios, causando sérios problemas ambientais. Embora nos deietos de curtumes predominem a forma Cr(III), menos tóxica, pode haver dependendo das condições, a sua oxidação para a forma Cr(VI), potencialmente cancerígeno. Numerosos adsorventes têm sido utilizados para a remoção ou concentração de substâncias tóxicas dos efluentes industriais. A cidade de Franca(SP) gera mensalmente cerca de 1.600m³ de resíduos contendo os íons crômio, por este motivo técnicas que removam este metal, assim como promovam a sua reutilização têm sido cada vez mais estudadas. O objetivo deste trabalho é verificar a potencial utilização de aluminossilicato de níquel, AlSi-Ni, preparados pelo método da co-precipitação na remoção dos íons crômio dos efluentes de curtumes provenientes da região de Franca, interior de São Paulo.

Resultados e Discussão

O aluminossilicato de níquel foi preparado, a pH crescente, pela adição de solução aquosa de amônia a uma solução contendo cloretos de níquel e alumínio e Na₂CO₃ com posterior adição de TEOS, a mistura foi agitada magneticamente durante 20 horas (T~60°C), onde ocorreu a formação de um material bastante viscoso. O sólido foi caracterizado por análises térmicas, raios-X, microscopia de varredura e área superficial. O método da co-precipitação possibilitou a formação de materiais lamelares com um baixo índice de cristalinidade, porém com estrutura em forma de grãos e área superficial de 302 m².g⁻¹.

A capacidade de adsorção do **AISi-Ni** para os íons de Cr(III), foram testados empregando-se o método da coluna empacotada e da batelada, à temperatura de ~ 25°C, utilizando-se soluções de cloreto de crômio (pH=3) e efluentes provenientes de curtumes da região de Franca (pH=4), que contém cerca de 9,61x10⁻² mmol.mL ⁻¹ de íons crômio. O método da coluna empacotada indicou 100% de adsorção tanto da solução dos íons crômio, como dos efluentes de curtume.

A cinética de adsorção mostrou que o equilíbrio foi atingido em 30 minutos indicando a viabilidade do uso deste suporte como adsorvente.

Normalmente em aluminossilicatos a adsorção dos íons metálicos pode ser realizada através de duas maneiras: pela adsorção dos mesmos na superfície do material ou por substituição iônica do íon metálico pelos cátions presentes nas lamelas dos mesmos.

Pelo método da batelada foi determinado a isoterma de adsorção para o Cr(III) a 25°C que é do tipo "S"(Spherical) classe III, típicas de processos onde a adsorção é cooperativa, indicando que os íons foram adsorvidos na superfície do aluminossilicato. O valor da capacidade máxima de adsorção (Nf) apresentada pelo material foi de 54,9 mmol.g¹. Sendo este um dado bastante positivo, uma vez que foi comprovado que o AlSi-Ni pode adsorver 100% o crômio provenientes dos efluentes dos curtumes.

Conclusão

Os resultados apresentados revelaram que o método da co-precipitação possibilitou a síntese de um aluminossilicato bastante eficiente quando utilizado como adsorvente na remoção de íons de Cr(III) presentes em soluções ou efluentes de curtumes provenientes da região de Franca.

Agradecimentos

FAPESP, CNPq, CAPES e CAPES/MECD-DGU Ministerio de Educación y Ciencia de España, PHB2005-0077-PC.

¹ Universidade de Franca, Av. Dr. Armando Salles Oliveira, 201 Franca – SP, CEP 14404-600; ² Universidade Federal da Bahia, Salvador – BA; ³ Departamento de Química Inorgânica, Universidade de Salamanca, Salamanca, Espanha; ⁴ Departamento de Química Aplicada, Universidade Pública de Navarra, Pamplona, Espanha.