Detecção de flavonóides em tricomas glandulares de duas espécies de *Chromolaena* (Eupatorieae) por cromatografia líquida de alta eficiência

Silvia H. Taleb-Contini¹ (PQ), Karin Schorr¹ (PQ) Fernando Batista Da Costa² (PQ), Dionéia C. R. de Oliveira³* (PQ)

¹Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, USP, Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto – SP, Brasil. ²Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. do Café, s/n, 14040-903, Ribeirão Preto – SP, Brasil. ^{3*}Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. do Café, s/n, 14040-90 drolivei@fcfrp.usp.br

Palavras Chave: Eupatorieae, flavonoides, tricomas

Introdução

A detecção e identificação de micromoléculas através da técnica de microamostragem de tricomas glandulares seguida por análise de HPLC/UV-vis é uma ferramenta valiosa para estudos quimiotaxonômicos de espécies de Asteraceae^{1,2}. O gênero *Chromolaena* possui 165 espécies (51 endêmicas no Brasil) e dados revelam que espécies brasileiras e estrangeiras compreendem dois grupos químicos distintos, de acordo com algumas classes de micromoléculas. O objetivo deste estudo foi detectar e caracterizar flavonóides em tricomas glandulares de *C. hirsuta* e *C. squalida*.

Resultados e Discussão

Quinze flavonóides previamente isolados das partes aéreas de C. hirsuta e C. squalida foram usados como substâncias de referência e nove deles foram detectados nos tricomas³ (Tabela 1). Os resultados indicaram que a maioria dos flavonóides destas duas espécies de Chromolaena está acumulada nos tricomas glandulares das folhas. Este é o primeiro relato de flavonóides em tricomas glandulares de espécies de Eupatorieae. Ambas espécies apresentaram principalmente flavonóis e derivados de glândulas, em suas incluindo glicosilados. Os derivados 3-0-metiléter que ocorrem em C. hirsuta estão ausentes em C. squalida. A química dos tricomas glandulares das duas espécies de Chromolaena apresentou diferenças significantes com respeito aos constituintes químicos detectados nos exudatos das folhas de C. odorata4.

Conclusões

Devido à grande ocorrência de flavonóides em espécies de Eupatorieae⁵ agregada ao seu alto valor quimiotaxonômico e biológico⁶, a análise dos tricomas glandulares por HPLC/UV-vis-DAD pode ser uma ferramenta valiosa para detecção e

caracterização de perfis de flavonóides em membros de Eupatorieae.

Tabela 1. Dados cromatográficos dos flavonóides usados como substâncias de referência e suas ocorrências nos tricomas glandulares das folhas de *C. hirsuta* e *C. squalida*.

Flavonoide	rrt1 MeOH:H ₂ O 3:2	rrt2 MeCN:H₂O 6,5: 3,5	A _{250/350}	C. hirsuta	C. squalida
1	0,99	-	0,74	-	-
2	0,97	0,60	0,85	-	-
3	1,99	2,08	0,79	-	-
4	1,49	1,13	1,14	m	*
5	1,39	1,16	0,94	m	-
6	1,17	0,71	0,82	+	+
7	1,28	1,87	0,51	m	m
8	1,92	2,01	0,78	-	-
9	1,36	1,08	1,07	-	-
10	0,97	0,89	0,95	m	-
11	1,32	0,28	0,75	*	-
12	1,01	0,68	0,54	+	m
13	0,97	0,65	0,98	-	-
14	0,69	0,40	1,23	m	+
15	0,64	0,31	1,42	+	+

rrt = tempo de retenção relativo ao DMP dimetilfenol); * = pico principal; + = pico médio; m = pico menor; - = não detectado; $A_{250/350}$ = razão entre as áreas dos picos em 250 e 350 nm; subst. de referência = 7,3'dimetoxiluteolina (1), luteolina (2), 6-metoxiluteolina 6-metoxiluteolina 7,3',4'-trimetiléter **(3)**, hidroxiluteolina 6,3'-dimetiléter (5), 6-hidroxiluteolina- 7metiléter scutellareina 7-metiléter **(6)**, quercetagentina 3,6,7,3'-tetrametiléter quercetagetina 3,6,3'-trimetiléter (9), quercetagetina 3,6dimetiléter (10), quercetagetina 3,6,7-trimetiléter (11), quercetina (12), quercetina 3-metiléter (13), quercetina 3- $O-\alpha-L$ -raminopiranosideo (14), quercetina 3- $O-\alpha-L$ ramnosil-(1-6)-β-D-galactosideo (15).

Agradecimentos

Os autores agradecem à FAPESP, Capes e CNPq.

¹ Da Costa, F.B., Schorr, K., Arakawa, N.S., Schilling, E.E., Spring, O. *J. Braz. Chem. Soc.* **2001**, *12*, 403.

² Schorr, K., García-Piñeres, A.J., Siedle, B., Merfort, I., Da Costa, F.B. *Phytochemistry* **2002**, *60*, 733.

Sociedade Brasileira de Química (SBQ)

³ Taleb-Contini, S.H, Schorr, K., Da Costa, F.B., Oliveira, D.C.R. *Bioch. Syst. Ecol.*,submetido (manuscript number BSE-D-05-0010).

⁴ Wollenweber, E., Dorr, M., Muniappan, R. *Biochem. Syst. Ecol.* **1995**, 23, 873.

⁵ Herz, W. *Biochem. Syst. Ecol.* **2001**, 29, 1115.

⁶ Emerenciano, V.P., Militão, J.S.L.T., Campos, C.C., Romoff, P., Kaplan, M.A.C., Zambon, M., Brant, A.J.C. *Biochem. Syst. Ecol.* **2001**, *29*, 947.