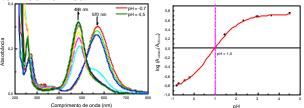
Síntese e caracterização de complexos de rutênio: formação *in situ* de óxido nítrico causada por transferência eletrônica fotoinduzida

Giseli Oriani (IC)^{1*}, Marília G. Sauaia (PQ)¹, Maria Vitória L. B. Bentley (PQ)¹, Roberto S. da Silva (PQ)¹
*giseli_oriani@yahoo.com.br

Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP. Av. do Café s/n, 14040-903, SP, Brasil

Palavras Chave: óxido nítrico, rutênio, transferência eletrônica fotoinduzida

Introdução


O óxido nítrico (NO) participa de uma série de eventos biorregulatórios, como controle da pressão sanguínea (via vasodilatação), neurotransmissão e citotoxicidade de macrófagos $^{[1]}$. Porém, sua instabilidade em sistemas biológicos (t $_{1/2}\approx 3$ s) dificulta o estudo de seus efeitos. Assim, existe um grande interesse em compostos que possam ser veículos de liberação controlada de NO a partir de estímulo químico, eletroquímico ou fotoquímico.

Para gerar NO, nesse trabalho, foi sintetizado **(A)** [Ru_A(Mepz)(NH₃)₄(pz)Ru_B(bpy)₂(NO)](PF₆)₆ e seus respectivos fragmentos:**(B)** t-[Ru(Mepz)(NH₃)₄(pz)]³⁺ e **(C)** c-[Ru(bpy)₂(pz)(NO)]³⁺.

Resultados e Discussão

Os complexos foram sintetizados com base em rotas descritas para compostos semelhantes^[2a]. As espécies foram caracterizadas por análise elementar, espectroscopia na região do UV-visível e do infravermelho e voltametria cíclica.

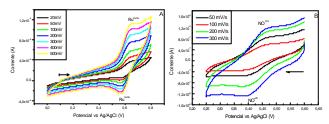
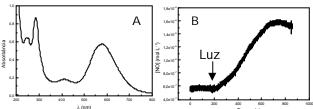

O valor do pKa do complexo **(B)** foi quantificado em 1,0 por espectroscopia UV-visível (Figura 1). Esse valor é menor que valores encontrados para espécies semelhantes^[2b]. Isso mostra que o forte caráter π-receptor do ligante Mepz diminui a densidade eletrônica sobre o ligante pz. Com isso, o complexo binuclear formado **(A)** apresenta uma maior retrodoação do metal Ru_B para o ligante ponte pz, o que pode lhe conferir uma maior estabilidade termodinâmica.

Figura 1. Espectro UV-vis de **(B)** em diferentes pHs e curva para a determinação do pKa.


Os voltamogramas cíclicos em tampão acetato (pH=4,5) para a espécie **(B)** mostraram um processo redox reversível centrado no íon metálico (Ru^{2+/3+}) ao redor de +0,62 V vs Ag/AgCl (Figura 2A). Para a espécie **(A)**, o processo ao redor de +0,45 V vs

Ag/AgCl é referente à oxi-redução do ligante nitrosil (NO^{+/0}) (Figura 2B).



Figuras 2A e 2B. Voltamogramas cíclicos, em meio aquoso, para as espécies (A) e (B).

A banda em 590 nm de **(A)** é devido à transição $d_\pi R u_A \rightarrow \pi (Mepz, pz)$ e propicia a fotoexcitação da molécula acarretando a liberação de NO (Figura 3). O mecanismo fotoquímico da espécie **(A)** está representado no Esquema 1.

Figura 3. $[Ru_A(Mepz)(NH_3)_4(pz)Ru_B(bpy)_2(NO)]^{6+}$ em tampão fosfato pH = 7,4. A) Espectro UV-vis e B) Liberação fotoinduzida de óxido nítrico.

Esquema 1. Mecanismo fotoquímico de (A).

Conclusões

A geração de NO a partir do complexo binuclear (A) mediante um estímulo luminoso na região do visível ocorre após um processo de transferência eletrônica fotoinduzida.

Agradecimentos

FAPESP, CNPq e CAPES.

¹ Ignarro L. Nitric Oxide. Academic Press, **2000**.

Sociedade Brasileira de Química (SBQ)

² a) Sauaia, M.G.; de Lima, R. G.; Tedesco, A.C.; da Silva, R.S. *J. Am. Chem. Soc.*, **2003**, *125*, 14718. b) Bento, M.L.; Tfoini, E. *Inorg. Chem.* **1988**, *27*, 3410.