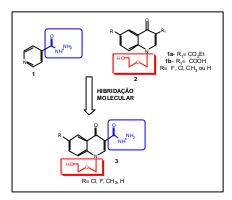
Síntese de Novos Aciclonucleosídeos Quinolônicos Potenciais Tuberculostáticos.


Fernanda da C. Santos (PG)¹, David de Oliveira Silva (IC)¹, Maria Cecília B. V. Souza (PQ)^{1*}, Anna Claudia Cunha (PQ)¹, Vitor Francisco Ferreira (PQ)¹

Universidade Federal Fluminense – Outeiro de São João Batista, s/nº, Campus Valonguinho – Niterói, RJ, Brasil. E-mail: gqocica@vm.uff.br.

Palavras Chave: Aciclonucleosídeos, Quinolonas, Tuberculose.

Introdução

O controle da tuberculose é dificultado por um número grande de fatores incluindo o desenvolvimento de cepas multirresistentes a drogas (MDR) em uso clínico, sendo necessário o desenvolvimento de novos agentes terapêuticos com major eficácia para o tratamento desta doença¹. As quinolonas constituem uma classe de substâncias amplamente utilizadas contra a tuberculose, e modificações em sua estrutura continuam sendo alvos de estudos de vários grupos de pesquisa em química orgânica e química farmacêutica no mundo inteiro². Neste trabalho está sendo apresentada а síntese de novos aciclonucleosídeos quinolônicos 3 que planejados racionalmente explorando a estratégia de hibridação molecular entre o tuberculostático isoniazida (1) e os aciclonucleosídeos quinolônicos do tipo 2 desenvolvidos anteriormente pelo nosso grupo de pesquisas, que exibiram atividade biológica³ (Figura 1).

Figura 1. Planejamento Estratégico dos Novos Acilconucleosídeos Quinolônicos **3**.

Resultados e Discussão

Os novos aciclonucleosídeos **3** foram sintetizados em bons rendimentos a partir da reação de substituição nucleofílica à carbonila do grupo éster dos aciclonucleosídeos do tipo **2** com hidrazina, em etanol sob refluxo (**Esquema 1**). Estes aciclonucleosídeos **2**, por sua vez, foram obtidos via prévia sililação das quinolonas **4** com N,O-29^a Reunião Anual da Sociedade Brasileira de Química

bis(trimetilsilil)trifluoroacetamida contendo 1% de clorotrimetilsilano (CTMS), seguida do acoplamento destes heterociclos sililados com 1,3-dioxolano sob catálise de CTMS/KI. Estes novos compostos **3** foram caracterizados por métodos espectroscópicos de análise (I.V., RMN de 1 H e de 13 C-APT). Em seus espectros de RMN de 1 H podem ser destacados: os sinais referentes a H como um singleto na região entre δ 5,69-5,96 e os os hidrogênios do grupo $-N\underline{H}_{2}$ como um sinal largo na região entre δ 3,39-4,61.

Esquema 1. Síntese dos Aciclonucleosídeos 3.

Conclusões

Uma nova classe de substâncias com potencial atividade tuberculostática, aciclonucleosídeos do tipo 3, foi obtida em bons rendimentos. Estes compostos foram devidamente caracterizados por métodos físicos de análise e encontram-se em fase de avaliação de sua atividade biológica.

Agradecimentos

CNPQ, CAPES, FAPERJ.

¹ Gupta, P. et al, European Journal of Medicinal Chemistry, **2004**, 39, 805-814.

² Yepes, J. F.; Sullivan, J.; Pinto, A.; Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2004, 98 (3), 267-273.

³ Gomes, C.R. B.; Frugulhetti, I. C. P. P.; Faro, L. V.; Alvarenga, L.; Souza, M. C. V. B.; Souza, T. M. L.; Ferreira, V. F.; *Bioorg. Med. Chem. Lett.* **2006**, 16(4), 1010-1013.