Determinação de SCFAs em produtos de fermentação de fibras com potencial nutracêutico

Ana Elisa Wanczinski^{1*} (PG), Vinicius C. Penteado²(PG), Tamara R. Calvo¹(PG), Marcio A. Andreo¹(PG), Mary Rosa R. de Marchi³(PQ), Alba R.M. Souza-Brito²(PQ), Wagner Vilegas¹(PQ)

1-UNESP, Instituto de Química, Departamento de Química Orgânica, Araraquara-SP, 2-Unicamp-IB/Departamento de Fisiologia e Biofísica, Campinas-SP, 3- UNESP, Instituto de Química, Departamento de Química Analítica, Araraquara-SP.

Palavras Chave: cromatografia gasosa, SCFAs, fermentação

Introdução

Os SCFAs- short chain fatty acids são produtos da fermentação anaeróbica de fibras alimentares e estão envolvidos na prevenção e tratamento de doenças intestinais, pois são substratos para a reparação do tecido inflamado, inibindo fatores pró-inflamatórios. Quantificar estes ácidos é, portanto, imprescindível dado que quanto maior for sua produção, maior será a eficiência da dieta na recuperação do tecido¹. Este trabalho tem como objetivo, quantificar os SCFAs provenientes da fermentação de diversas proporções de fibras em tempos distintos (0, 2, 4, 8, 12 e 24 horas) com o propósito de eleger os resultados mais promissores para o desenvolvimento de um nutracêutico.

Resultados e Discussão

Diversas proporções de fibras de laranja e banana (substrato de 0,5g) foram fermentadas em tempos diferentes (0, 2, 4, 8, 12 e 24 horas). O produto formado (SCFAs) foi centrifugado e o sobrenadante foi injetado em cromatógrafo gasoso com detector de ionização em chama (GC/FID). A coluna utilizada foi a CPWAX-52 CB® (polietilenoglicol). A temperatura foi otimizada utilizando-se a seguinte programação: 100 à 220 °C (10 °C/min) permanecendo 8 min nesta temperatura, enquanto as temperaturas do injetor e detector foram mantidas em 250°C e 300°C, respectivamente.

Os SCFAs são analitos muito voláteis, estando sujeitos a erros no momento da injeção. Por isto, foi necessário a adição de padrão interno. Vários foram testados (acetona, isopropanol, ácido valérico) e o melhor resultado foi alcançado com o ácido octanóico. Os tempos de retenção observados foram: ác.acético (3,834 min), ác.propiônico (4,548 min), ác.butírico (5,365 min) e ác.octanóico (9,684 min). Os CV dos tempos de retenção e da linearidade foram todos inferiores a 10%, e a resolução obtida foi maior que 20,0 para todos os analitos.

Para todos os ácidos e níveis de concentração estudados foram obtidos coeficientes de correlação maiores que 99%, o que indica que há uma ótima

correlação entre as áreas e as concentrações estudadas (tabela 1). Os limites de detecção e quantificação foram determinados pelo método da IUPAC e os resultados estão apresentados na tabela 2. As maiores concentrações de SCFAs foram obtidas após 24 horas de fermentação com a amostra que é contida apenas por fibra de banana (0,5 g de fibra de banana e 0g de fibra de laranja).

Tabela 1. Equações da reta para as curvas analíticas

Ácidos	Equações da	Coeficientes	CV do fator de
carboxílico	reta	de	resposta
s	y= ax +b	correlação (R²)	
Acético	Y=0,01093x + 0,2789	0,9989	8,5
Propiônico	Y= 0,01438x + 0,006237	0,9999	8,2
Butírico	Y= 0,01017x + 0,02126	0,9985	9,6

Tabela 2. Limites de detecção e quantificação.

Ácidos	Limites de detecção (LD) (µg/mL)	Limites de quantificação (LQ) (µg/mL)
Acético	17,1	57,1
Propiônico	1,9	6,2
Butírico	1,2	4,1

Conclusões

O método proposto para a determinação de SCFAs foi considerado satisfatório, com um tempo de análise relativamente baixo (20 min). As concentrações mais altas dos ácidos acético (52,8 µg/mL), propiônico (187,8 µg/mL) e butírico (226,0 µg/mL) foram obtidos com a amostra composta apenas por fibra de banana. A vantagem é que estas fibras são de baixo custo e de fácil acesso a toda a população brasileira.

Agradecimentos

BIOTA-FAPESP

^{*}anaelisa@posgrad.ig.unesp.br

Sociedade Brasileira de Química (SBQ)

¹ Rodriguez-Cabezas, M.E.et al. Intestinal antiinflamatory activity of dietary fiber (Plantago ovata seeds) in HLA-B27 transgenic rats. Clin.Nutr., **2003**, v.22, n.5, p.463-471.