Análise por CG-EM e atividade moluscicida do óleo essencial das folhas de *Ocotea gadneri* (Meisn.) Mez (Lauraceae).

Celidarque da Silva Dias¹* (PQ), Denise Fernandes Coutinho² (PG), Rodrigo M. Martins¹ (IC), Tânia Maria Sarmento Silva¹ (PQ), Afrânio A. Craveiro³ (PQ), Maria de Fátima Agra¹ (PQ), José Maria Barbosa Filho¹ (PQ). *celidarquedias @ltf.ufpb.br*.

Palavras Chave: Ocotea, óleo essencial, Moluscicida

Introdução

Ocotea gardneri (Meisn.) Mez é uma planta da família Lauraceae. Suas espécies são encontradas principalmente na América do Sul, e se destacam por originar metabólitos derivados da via chiquimato, como os fenilpropanóides, no caso, óleos essenciais. Esses metabólitos são conhecidos por apresentar atividade antimicrobiana1 e moluscicida2,3. A doença parasitária, esquistossomose, afeta cerca de 200 milhões de pessoas em todo o mundo, causando elevados níveis de morbidade e mortalidade em 74 países tropicais e subtropicais. No Brasil, a esquistosomose (bilharziasis) é causada pela presença do verme Schistossoma mansoni no homem, hospedeiro definitivo, já a Biomphalaria glabrata é um molusco de água parada e age como hospedeiro intermediário⁴. O objetivo do trabalho foi identificar a composição do óleo essencial das folhas de Ocotea gardneri e testar seu potencial moluscicida em Biomphalaria glabrata.

Resultados e Discussão

As folhas de Ocotea gardneri (Meisn.) Mez, após serem submetidas a hidrodestilação em aparelho de Clevenger rendeu 0,8 % de óleo essencial, que foi analisado através de cromatografia em fase gasosa acoplado a espectrometria de massa (CG-EM) A identificação química de cada substância que compõe o óleo foi determinada através dos seus tempos de retenção e índice de Kovats por comparação com os dados disponíveis no banco de dados espectrais Wiley. Análise dos espectros de massa e comparação com os dados da literatura, observou-se a predominância de sequiterpenos (54 %) e monoterpenos (46 %), tendo como componentes majoritários o trans-ß-cariofileno (29,28 %) e o a-pineno (15,40 %). Na composição do óleo essencial das folhas, observou-se também a presença de caureno (18,35%), um diterpeno, Tabela 1. A metodologia para o bioensaio foi de acordo com os parâmetros descrito por WHO⁵ que considera

atividade moluscicida com CL_{90} <100µg/mL, sendo utilizada três concentrações com dez caramujos em duplicata. O óleo essencial mostrou atividade moluscicida para *Biophalaria glabrata* com valores de CL_{90} =16,5, CL_{50} =9,7 e CL_{10} =2,8 µg/mL.

Tabela 1. Composição (%) do óleo essencial obtido das folhas de *Ocotea gardneri* (Meisn.) Mez.

Composto	PM	Rt/min	KI	%
a-Pineno	136	5,97	940	15,40
ß-Pineno	136	7,37	981	8,93
Mirceno	136	7,97	994	1,29
Limoneno	136	9,44	1034	4,18
a-Terpinoleno	136	12,16	1085	4,82
a-Copaeno	204	27,02	1373	2,50
trans-ß-Cariofileno	204	29,28	1430	29,19
a-Humuleno	204	30,94	1462	5,50
Germacreno D	204	32,36	1493	7,10
δ-Elemeno	204	33,12	1440	3,43
γ-Cadineno	204	34,54	1521	3,58
Torreyol	222	40,14	1340	1,02
*Caureno	272	51,04	1985	18,35

PM=peso molecular, **RT/min**=tempo de retenção por minuto, **KI**=índice de Kovats, %= porcentagem, *Diterpeno

Conclusões

O óleo essencial das folhas de *Ocotea gardneri* (Meisn.) Mez, mostrou atividade contra *Biophilaria glabrata*, e seus componentes principais são o *trans-*ß-cariofileno, a-pineno e caureno.

Agradecimentos

CNPq-PDJ, LTF

¹Universidade Federal da Paraíba, Laboratório de Tecnologia Farmacêutica, caixa postal 5009, 58051-970, João Pessoa, Paraíba, Brasil.

²Departamento de Farmácia, Universidade Federal do Maranhão, São Luís, MA, Brasil.

³Universidade Federal do Ceará, Parque de Desenvolvimento Tecnológico, Campus do PICI, caixa postal 6022, 60451-970, Fortaleza, CE, Brasil.

¹Dias, C.S, Mota, S.G.R, Cabral, A.G.S. Lima, E.O., Barbosa-Filho, J.M. V Simpósio Brasileiro de Farmacognosia, 4 a 7 de outubro de 2005, Recife, Pernambuco, Brasil. **2005**

²Dias, C.S, Coutinho, D.F., Mota, S.G.R, Cabral, A.G.S. Martins, R.M. Silva, T.M.S, Barbosa-Filho, J.M. V Simpósio Brasileiro de Farmacognosia, 4 a 7 de outubro de 2005, Recife, Pernambuco, Brasil. **2005.**

³Tavares, J.F., Silva, M.V.B., Queiroga, K. F. Martins, et al. *J. Essent. Oil Res.* (Aceito), **2005.**

⁴Lardans, V., Dissous, C. Parasitol Today 14, 413-417, 1998.

Sociedade Brasileira de Química (SBQ)

⁵Woorl Health Organization, Reports Of The Scientific Working Group On Plant Molluscicides. Document TDR/SCH.SWG4/83.3. Geneva: WHO, **1983.**