Uso do adsorvente SiO₂-Nb₂O₅ para pré-concentração e determinação em linha de Pb (II) em amostras aquosas.

Kalya C. P. Roux (IC)*, Jeferson S. Carletto (IC), Heloisa F. Maltez (PG), Edmar Martendal (PG), Eduardo Carasek (PQ). *kazinhax@hotmail.com.

Departamento de Química, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC.

Palavras Chave: Chumbo, FAAS, otimização multivariada.

Introdução

O chumbo tem diferentes usos na indústria. Devido a sua alta toxicidade pode afetar quase todos os órgãos e sistemas no organismo humano. Por isso a necessidade da determinação deste metal em diferentes amostras.

Neste estudo utilizou-se sílica gel modificada com óxido de nióbio (V) (SiO₂-Nb₂O₅) para pré-concentrar e separar o chumbo em um sistema de injeção em fluxo em linha e detecção por F AAS.

Resultados e Discussão

A otimização do sistema em linha foi feita pelo método multivariado usando planejamento fatorial completo (N= 2). Os fatores escolhidos foram o tipo de tampão, concentração do eluente (HNO₃), vazão da amostra e vazão do eluente. Na Tabela 1 estão dispostos os níveis mínimos e máximos utilizados para realizar os 16 experimentos, os quais foram feitos em duplicata. A partir dos resultados obtidos e usando análise de variância (ANOVA) e probabilidade estatística (p=0,05) foi construído o gráfico de Pareto para determinar a influência dos fatores e suas interações no sistema. As condições iniciais do sistema FI-F AAS foram volume de amostra = 15 mL, concentração de chumbo = 100 μg L⁻¹, pH da amostra = 7,0 (determinado em estudos anteriores) e a resposta analítica = eficiência de sensibilidade (SE)¹.

Tabela 1. Fatores e níveis usados no planejamento fatorial

1.61011.61		
Fator	Mínimo (-)	Máximo (+)
Tipo de tampão	Citrato de Sódio	*TRIS
Vazão da amostra	3,3 mL min ⁻¹	6,3 mL min ⁻¹
Concentração do eluente	0,5 mol L ⁻¹	2,5 mol L ⁻¹
Vazão do eluente	3,3 mL min ⁻¹	5,3 mL min ⁻¹

^{*} Tris (hidroximetil) aminometano

A Figura 1 ilustra o gráfico de Pareto, onde são observadas as variáveis significantes. O tipo de tampão da amostra escolhido foi o citrato de sódio. Uma otimização final para determinar a melhor vazão da amostra e do eluente foi realizada a partir da matriz Doehlert e superfície de resposta. Obteve-se

como resultados vazão da amostra de 5,1 mL min⁻¹ e vazão do eluente de 5,3 mL min⁻¹.

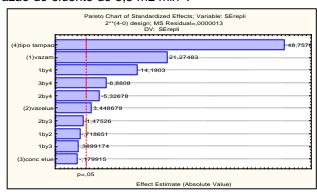


Figura 1. Gráfico de Pareto.

A partir das variáveis otimizadas foram obtidos os parâmetros analíticos de mérito (Tabela 2).

Tabela 2. Parâmetros analíticos de mérito.

Faixa linear de trabalho ^a	10 – 120 μg L ⁻¹	
R	0,9987	
RSD (100 μg L ⁻¹ , n=7)	1,6 %	
LOD	1,08 μg L ⁻¹	
LOQ	3,61 μg L ⁻¹	
EF ^b	46,4	

^a faixa linear estudada, ^b fator de enriquecimento.

Amostras de água da Lagoa do Peri (Florianópolis, SC) foram analisadas e não apresentaram concentração de chumbo dentro do limite de detecção e após adição de alíquotas do analito o teste de recuperação foi de 90 a 110 %. Análise de amostra certificada deve ser feita para validação da metodologia.

Conclusões

A aplicação do método multivariado foi adequada para otimização do sistema proposto e apresenta a vantagem de mostrar a interação simultânea entre as variáveis. O sistema em linha FI-F AAS foi simples e eficiente.

Agradecimentos

Ao PIBIC – CNPq pelo apoio financeiro.

29ª Reunião Anual da Sociedade Brasileira de Química

Sociedade Brasileira de Química (SBQ)

¹ Ferreira, S. L. C.; Santos, W. N. L. dos; Bezerra, M. A.; Lemos, V. A. e Bosque-Sendra, J. M. *Anal. Bioanal. Chem.* **2003**, *375*, 443.