Estudo do Equilíbrio de Fases em Sistemas N,N-Dimetil Acrilamida/ CO₂ /Corantes Dispersos.

Washington L. F. Santos¹(PQ), Rogério Favareto²(PG), Vladimir F. Cabral²(PQ), Edvani C. Muniz(PQ)¹, Lucio Cardozo-Filho²(PQ), Adley F. Rubira¹(PQ)*

(1) Universidade Estadual de Maringá, Departamento de Química, (2) Universidade Estadual de Maringá, Departamento de Engenharia Química e-mail: afrubira@uem.br.

Palavras Chave: CO₂ supercrítico, equilibrio de fases, DMAAm.

Introducão

As vantagens da utilização de CO₂ supercrítico na indústria têxtil tem sido reportadas na literatura[1,2]. Nosso grupo tem estudado o tingimento em CO2 supercrítico de filmes e fibras de PET modificados com N,N-dimetil acrilamida (DMAAm)[1]. Durante os processos de tingimento observou-se que a DMAAm incorporada ao PET, durante pré-tratamento, é desorvida da fbra e passa a fazer parte do meio de tingimento. Assim o estudo do equilíbrio de fases do sistema DMAAm-CO₂-Corante é de grande importância para o entendimento do tingimento de fibras de PET modificadas com DMAAm. Neste trabalho mediu-se comportamento do equilíbrio de fase do sistema binário DMAAm-CO2, bem como a influência da presenca dos corantes CI Disperse Blue 79 and CI Disperse Red 60 no sistema DMAAm-CO₂.

Resultados e Discussão

O comportamento do sistema binário CO₂-DMAAm em diferentes temperaturas para várias composições da mistura, foi determinado pela medida da pressão no ponto bolha/orvalho. Utilizando os dados referentes aos pontos de bolha, juntamente com propriedades físicas(temperatura e pressão crítica, temperatura de fusão, fator acêntrico e massa molar) da DMAAm e CO2, foram calculados os parâmetros de interação binária k_i e l_i entre os componente da mistura CO₂-DMAAm. Utilizando os parâmetros de interação binária e a equação de estado cúbica de Peng-Robinson (EDS-PR) foi possível calcular as curvas de pressão em função da fração molar do CO₂ na fase líquida (P-x) e em função da fração molar do CO₂ na fase vapor (P-y) para o sistema binário DMAAm-CO2. Na Figura 1 estão dispostos os pontos de bolha experimentais para as isotermas medidas. Por meio da figura 01 observa-se que o modelo de EDS-PR representa bem os pontos experimentais. Os pontos de orvalho não foram utilizados no cálculo dos parâmetros de interação binária, no entanto, esses pontos foram previstos pelo modelo utilizado. A seguir foram obtidos os pontos de bolha experimentais para o sistema CO₂-DMAAm-corante disperso em três temperaturas. Na figura 02 são apresentados os pontos de bolha do sistema ternário CO2-DMAAmcorante disperso as isotermas calculadas para o sistema binário CO₂-N,N-Dimetil acrilamida. Por meio da figura 02 observa-se que a presença do corante não provocou alterações significativas nas curvas de equilíbrio de fase. A partir dos dados de equilíbrio de fase medidos foi possível interpretar os resultados de tingimento em CO₂ supercrítico de filmes e malhas de PET^[2].

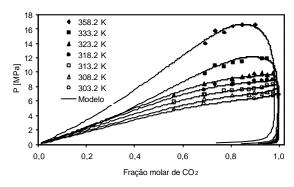
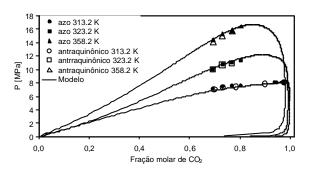



Figura 1. Diagrama P-x-y para o sistema CO₂-DMAAm

Figura 2. Diagrama P-x-y para o sistema CO₂-DMAAm e pontos de bolha para CO₂-DMAAm-corante.

Conclusões

Os diagramas de equilíbrio de fase para o sistema binário CO₂-N,N-Dimetil acrilamida foram obtidos com sucesso. À presença dos corantes dispersos utilizados não deslocam os diagramas nos níveis estudados. A análise dos resultados de tingimento em conjunto com os diagramas de ELV é de fundamental importância para a escolha da melhor região de tingimento em CO₂ supercrítico, de filmes e malhas de PET.

Agradecimentos

A CAPES, ao CNPq, a fundação Araucária

29ª Reunião Anual da Sociedade Brasileira de Química

Sociedade Brasileira de Química (SBQ)

W. L. F. Santos, M. F. Porto, E. C. Muniz, N. P. Povh, A. F. Rubira, *Journal of Supercritical Fluids*, **2001**, 19, 177.
W. L. F. Santos, R. Favoreto, V. F. Cabral, E. C. Muniz, L. Cardozo-Filho, A. F. Rubira, *Journal of Supercritical Fluids*, **2006**, no prelo.