Estudo espectroeletroquímico (SERS) de nanopartículas magnéticas adsorvidas em eletrodo de prata.

Guilherme V. M. Jacintho(PG), Paola Corio(PQ), Paulo A. Z. Suarez(PQ), Joel C. Rubim(PQ)* *jocrubim@unb.br*

Laboratório de Materiais e Combustíveis (LMC), Instituto de Química da Universidade de Brasília, CP 04478, 70919-970, Brasília, DF, Brazil e Instituto de Química da Universidade de São Paulo CP 2607, 05513-970, SP, Brazil.

Palavras Chave: efeito SERS, ferrofluido, maguemita.

Introdução

A espectroscopia Raman já mostrou ser uma ferramenta valiosa na caracterização de ferrofluidos (FF) magnéticos^{1,2}. O objetivo deste trabalho é estudar o comportamento espetroeletroquímico do FF magnético derivado de maguemita (r-Fe₂O₃) através da voltametria cíclica associada ao efeito SERS (Surface-enhanced Raman scattering), no intuito de obter informações sobre a composição e estrutura das espécies presentes na superfície da nanopartícula magnética.

O FF foi preparado de acordo com procedimento descrito na literatura.³ Para obtenção do efeito SERS, o eletrodo de Ag é previamente ativado (ciclos de oxid.-red.) em solução de KCI 0,1 M. Em seguida o eletrodo é removido e transferido para a célula espectroeletroquímica contendo o ferrofluido na presença do eletrólito suporte (KCI 0,1 M).

Resultados e Discussão

A Fig.1 mostra os espectros Raman da maguemita em fase sólida e dispersa em solução (ferrofluido).

Figura 1. Espectros Raman (632.8 nm) de γ -Fe₂O₃ em fase sólida(a) e em solução(b).

A Fig. 2 mostra os espectros SERS do eletrodo de Ag na presença do ferrofluido. Estes resultados mostram que no potencial de -0.2 V (vs. ECS) o espetro SERS difere dos espectros da Fig.1. O espectro resultante da diferença entre o espectro SERS em -0,2 V e o espectro da Fig.1(b) mostram uma banda centrada em ca. 660 cm⁻¹ a qual atribuímos à presença de δ -FeOOH.⁴ Em -0,4 V, as intensidades relativas dos picos próximos a 670 e 715 cm⁻¹ se tornam mais semelhantes às observadas na Fig.1, caracterizando a presença da γ -Fe₂O₃. Para 29^a Reunião Anual da Sociedade Brasileira de Química

potenciais mais negativos os sinais Raman característicos da γ -Fe₂O₃ desaparecem, dando lugar a um pico intenso em 671 cm⁻¹. A meia largura deste pico e sua posição caracterizam a presença de magnetita (Fe₃O₄).

Figura 2. Espectros SERS (632.8 nm) de γ -Fe₂O₃ adsorvida sobre eletrodo de Ag, nos potenciais indicados. Conc. de Fe = 0,5 molL⁻¹.

Os ciclovoltamogramas (CVs) do eletrodo de prata neste meio mostram um primeira onda de redução em ca. -0.2 V, δ -FeOOH + H⁺ + e⁻ \rightarrow Fe(OH)₂. Outras ondas de redução são observadas em -0,6 e -0,9 V, uma delas associada à reação 3γ -Fe₂O₃ + 2H⁺ + 2e⁻ \rightarrow 2Fe₃O₄ + H₂O. Para potenciais mais negativos que -0,9 V, os CVs mostram uma onda de redução em ca.-1,1 V. De fato, o pico em 671 cm⁻¹ (Fe₃O₄) desaparece no potencial de -1,2 V (Fe₃O₄ + 8H⁺ + 6e⁻ \rightarrow 3Fe + 4H₂O).

Conclusões

A nanopartícula de maguemita dispersa em meio aquoso apresenta um núcleo constituído de γ -Fe₂O₃, tendo em sua superfície δ -FeOOH. A presença de Fe₃O₄ só foi detectada após redução da maguemita (γ -Fe₂O₃) e do δ -FeOOH.

Agradecimentos

CNPq, FINEP/CTPetro, FINATEC, FAPESP

⁴ Rubim, J. C.; Dünwald J.; *J.Electroanal. Chem.*, **1989**, *31*, 185.

¹ Sousa, M. H.; Tourinho, F. A.; Rubim, J. C.; *J. Raman Spectrosc.*, **2000**, *31*, 185.

² Silva, J.C.O.; Sousa, M.H.; Tourinho, F.A.; Rubim, J.C.; *Langmuir*, **2002**, *18*, 5511.

³ Massart, R.; Franck, R.; Tourinho, F.A.; *J. Mat. Sci..*, **1990**, *25*, 3249.