Determinação de cromo em água por FI-F AAS usando sílica gel modificada com óxido de nióbio e otimização multivariada.

Edmar Martendal* (PG), Heloísa F. Maltez (PG), Eduardo Carasek (PQ). *edmarmartendal@hotmail.com.

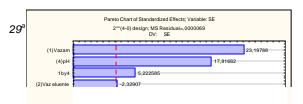
Departamento de Química - Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC.

Palavras Chave: otimização multivariada, cromo, SPE.

Introdução

A determinação de cromo em amostras aquosas se reveste de apreciável importância devido a sua toxicidade. O Cr (III) é um elemento traço fundamental para o adequado funcionamento de organismos vivos, por ser essencial ao metabolismo de carboidratos, lipídeos e proteínas. Entretanto, o Cr (IV) é tóxico e carcinogênico, afetando pulmões, fígado e rins.

Neste trabalho foi utilizada a extração em fase sólida combinada com sistema FI-F AAS para préconcentração e determinação de cromo(III) em amostras de água.


Resultados e Discussão

As variáveis envolvidas, como vazão da amostra (Vaz. am.), pH da amostra, concentração do eluente (conc. HNO₃) e vazão do eluente (Vaz. Elue.) foram otimizadas utilizando um planejamento fatorial completo, com posterior otimização das variáveis significantes pela superfície de resposta através da matriz Doehlert. O volume de amostra utilizado em todas as otimizações foi de 15 mL e a mini-coluna foi preparada com 100 mg de sílica-gel inorgano-funcionalizada com óxido de nióbio (SiO₂-Nb₂O₅)¹.

Tabela 1. Variáveis e níveis utilizados para o estudo multivariado.

Variável	Mín.(-)	PC (0)	Máx (+)
pH da amostra	3,0	6,0	9,0
Vaz.am. (mL min ⁻¹)	3,3	5,6	7,8
Vaz. Elue. (mL min ⁻¹)	3,3	4,5	5,6
Conc.HNO ₃ (mol L ⁻¹)	1,0	2,0	3,0

Através do gráfico de Pareto (Fig. 1) pode ser visto os efeitos principais e de interação que as variáveis exercem sobre a resposta analítica e sua significância. O pH da amostra e a vazão da amostra mostraram-se significantes e foram posteriormente otimizados pelo planejamento Doehlert. A vazão do eluente foi fixada em 4,5 mL min-1 e a concentração do eluente em 2,0 mol L-1 para os estudos posteriores. A superfície de resposta relacionando o sinal analítico com o pH da amostra e a vazão da amostra tem como máximo pH igual a 7,0 e vazão da amostra igual a 6,0 mL min-1.

Figura 1. Gráfico de Pareto das variáveis estudadas no sistema de pré-concentração de Cr(III).

Com todas as variáveis otimizadas foram obtidos os parâmetros analíticos de mérito (Tabela 2).

Tabela 2. Parâmetros analíticos de mérito.

Tabola 21 Talamotros anamicos de mente:			
Limite de detecção (n=11)	0,8 μg L ⁻¹		
Limite de quantificação (n=11)	2,7 μg L ⁻¹		
RSD (30,0 µg L ⁻¹ , n = 7)	3,5 %		
Faixa linear	5-75 μg L ⁻¹		
Coeficiente de correlação (R)	0,9974		
Fator de pré-concentração	23		
Concentração característica	2,9 μg L ⁻¹		

A amostra de água subterrânea coletada do aqüífero do Campeche, Florianópolis, SC apresentou concentração de Cr (III) abaixo do limite de detecção do método. A amostra foi fortificada e as recuperações ficaram entre 94 e 102%.

Conclusões

O método mostrou ser útil na determinação de Cr (III) em amostras de água em nível traço e tem grande potencial na análise de especiação de cromo, pois em pH 7,0 não ocorre adsorção de Cr (IV). A otimização multivariada mostrou ser mais rápida e confiável.

Agradecimentos

Ao CNPq pelo suporte financeiro.

¹ Dutra, L.R; Mal, H.F.; Carasek, E.,.Talanta, prelo, *on-line*, 2005.